Step |
Hyp |
Ref |
Expression |
1 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
2 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
3 |
1 2
|
readdcld |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
4 |
|
2rp |
⊢ 2 ∈ ℝ+ |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℝ+ ) |
6 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
7 |
6
|
releabsd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) ≤ ( abs ‘ - 𝐴 ) ) |
8 |
6
|
abscld |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) ∈ ℝ ) |
9 |
6
|
recld |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) ∈ ℝ ) |
10 |
8 9
|
subge0d |
⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ( abs ‘ - 𝐴 ) − ( ℜ ‘ - 𝐴 ) ) ↔ ( ℜ ‘ - 𝐴 ) ≤ ( abs ‘ - 𝐴 ) ) ) |
11 |
7 10
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( abs ‘ - 𝐴 ) − ( ℜ ‘ - 𝐴 ) ) ) |
12 |
|
absneg |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ - 𝐴 ) = ( abs ‘ 𝐴 ) ) |
13 |
|
reneg |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) |
14 |
12 13
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ - 𝐴 ) − ( ℜ ‘ - 𝐴 ) ) = ( ( abs ‘ 𝐴 ) − - ( ℜ ‘ 𝐴 ) ) ) |
15 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℂ ) |
16 |
2
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
17 |
15 16
|
subnegd |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) − - ( ℜ ‘ 𝐴 ) ) = ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) |
18 |
14 17
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ - 𝐴 ) − ( ℜ ‘ - 𝐴 ) ) = ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) |
19 |
11 18
|
breqtrd |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) ) |
20 |
3 5 19
|
divge0d |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( abs ‘ 𝐴 ) + ( ℜ ‘ 𝐴 ) ) / 2 ) ) |