| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abscl | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 2 |  | recl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 3 | 1 2 | readdcld | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 4 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  2  ∈  ℝ+ ) | 
						
							| 6 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 7 | 6 | releabsd | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ - 𝐴 )  ≤  ( abs ‘ - 𝐴 ) ) | 
						
							| 8 | 6 | abscld | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ - 𝐴 )  ∈  ℝ ) | 
						
							| 9 | 6 | recld | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ - 𝐴 )  ∈  ℝ ) | 
						
							| 10 | 8 9 | subge0d | ⊢ ( 𝐴  ∈  ℂ  →  ( 0  ≤  ( ( abs ‘ - 𝐴 )  −  ( ℜ ‘ - 𝐴 ) )  ↔  ( ℜ ‘ - 𝐴 )  ≤  ( abs ‘ - 𝐴 ) ) ) | 
						
							| 11 | 7 10 | mpbird | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( ( abs ‘ - 𝐴 )  −  ( ℜ ‘ - 𝐴 ) ) ) | 
						
							| 12 |  | absneg | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ - 𝐴 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 13 |  | reneg | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ - 𝐴 )  =  - ( ℜ ‘ 𝐴 ) ) | 
						
							| 14 | 12 13 | oveq12d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ - 𝐴 )  −  ( ℜ ‘ - 𝐴 ) )  =  ( ( abs ‘ 𝐴 )  −  - ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 15 | 1 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 16 | 2 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 17 | 15 16 | subnegd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ 𝐴 )  −  - ( ℜ ‘ 𝐴 ) )  =  ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 18 | 14 17 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( abs ‘ - 𝐴 )  −  ( ℜ ‘ - 𝐴 ) )  =  ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 19 | 11 18 | breqtrd | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 20 | 3 5 19 | divge0d | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( ( ( abs ‘ 𝐴 )  +  ( ℜ ‘ 𝐴 ) )  /  2 ) ) |