Description: Equivalent to saying that the square of the imaginary component of the square root of a complex number is a nonnegative real number. Lemma for sqrtcval . See imsqrtval . (Contributed by RP, 11-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | sqrtcvallem2 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
2 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
3 | 1 2 | resubcld | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
4 | 2rp | ⊢ 2 ∈ ℝ+ | |
5 | 4 | a1i | ⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℝ+ ) |
6 | releabs | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ) | |
7 | 1 2 | subge0d | ⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ↔ ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ) ) |
8 | 6 7 | mpbird | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) |
9 | 3 5 8 | divge0d | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) |