Metamath Proof Explorer


Theorem sqrtcvallem2

Description: Equivalent to saying that the square of the imaginary component of the square root of a complex number is a nonnegative real number. Lemma for sqrtcval . See imsqrtval . (Contributed by RP, 11-May-2024)

Ref Expression
Assertion sqrtcvallem2 ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) )

Proof

Step Hyp Ref Expression
1 abscl ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ )
2 recl ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ )
3 1 2 resubcld ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ∈ ℝ )
4 2rp 2 ∈ ℝ+
5 4 a1i ( 𝐴 ∈ ℂ → 2 ∈ ℝ+ )
6 releabs ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) )
7 1 2 subge0d ( 𝐴 ∈ ℂ → ( 0 ≤ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ↔ ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ) )
8 6 7 mpbird ( 𝐴 ∈ ℂ → 0 ≤ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) )
9 3 5 8 divge0d ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) )