Description: Equivalent to saying that the square of the imaginary component of the square root of a complex number is a nonnegative real number. Lemma for sqrtcval . See imsqrtval . (Contributed by RP, 11-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqrtcvallem2 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | recl | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) | |
| 3 | 1 2 | resubcld | ⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) | 
| 4 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 5 | 4 | a1i | ⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℝ+ ) | 
| 6 | releabs | ⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ) | |
| 7 | 1 2 | subge0d | ⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ↔ ( ℜ ‘ 𝐴 ) ≤ ( abs ‘ 𝐴 ) ) ) | 
| 8 | 6 7 | mpbird | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) ) | 
| 9 | 3 5 8 | divge0d | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( ( abs ‘ 𝐴 ) − ( ℜ ‘ 𝐴 ) ) / 2 ) ) |