| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
| 2 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
| 3 |
1 2
|
resubcld |
|- ( A e. CC -> ( ( abs ` A ) - ( Re ` A ) ) e. RR ) |
| 4 |
|
2rp |
|- 2 e. RR+ |
| 5 |
4
|
a1i |
|- ( A e. CC -> 2 e. RR+ ) |
| 6 |
|
releabs |
|- ( A e. CC -> ( Re ` A ) <_ ( abs ` A ) ) |
| 7 |
1 2
|
subge0d |
|- ( A e. CC -> ( 0 <_ ( ( abs ` A ) - ( Re ` A ) ) <-> ( Re ` A ) <_ ( abs ` A ) ) ) |
| 8 |
6 7
|
mpbird |
|- ( A e. CC -> 0 <_ ( ( abs ` A ) - ( Re ` A ) ) ) |
| 9 |
3 5 8
|
divge0d |
|- ( A e. CC -> 0 <_ ( ( ( abs ` A ) - ( Re ` A ) ) / 2 ) ) |