| Step | Hyp | Ref | Expression | 
						
							| 1 |  | abscl |  |-  ( A e. CC -> ( abs ` A ) e. RR ) | 
						
							| 2 |  | recl |  |-  ( A e. CC -> ( Re ` A ) e. RR ) | 
						
							| 3 | 1 2 | resubcld |  |-  ( A e. CC -> ( ( abs ` A ) - ( Re ` A ) ) e. RR ) | 
						
							| 4 |  | 2rp |  |-  2 e. RR+ | 
						
							| 5 | 4 | a1i |  |-  ( A e. CC -> 2 e. RR+ ) | 
						
							| 6 |  | releabs |  |-  ( A e. CC -> ( Re ` A ) <_ ( abs ` A ) ) | 
						
							| 7 | 1 2 | subge0d |  |-  ( A e. CC -> ( 0 <_ ( ( abs ` A ) - ( Re ` A ) ) <-> ( Re ` A ) <_ ( abs ` A ) ) ) | 
						
							| 8 | 6 7 | mpbird |  |-  ( A e. CC -> 0 <_ ( ( abs ` A ) - ( Re ` A ) ) ) | 
						
							| 9 | 3 5 8 | divge0d |  |-  ( A e. CC -> 0 <_ ( ( ( abs ` A ) - ( Re ` A ) ) / 2 ) ) |