| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 2 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 3 | 1 2 | deccl |  |-  ; 1 5 e. NN0 | 
						
							| 4 | 3 | nn0cni |  |-  ; 1 5 e. CC | 
						
							| 5 |  | ax-icn |  |-  _i e. CC | 
						
							| 6 |  | 8cn |  |-  8 e. CC | 
						
							| 7 | 5 6 | mulcli |  |-  ( _i x. 8 ) e. CC | 
						
							| 8 | 4 7 | addcli |  |-  ( ; 1 5 + ( _i x. 8 ) ) e. CC | 
						
							| 9 |  | resqrtval |  |-  ( ( ; 1 5 + ( _i x. 8 ) ) e. CC -> ( Re ` ( sqrt ` ( ; 1 5 + ( _i x. 8 ) ) ) ) = ( sqrt ` ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) + ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( Re ` ( sqrt ` ( ; 1 5 + ( _i x. 8 ) ) ) ) = ( sqrt ` ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) + ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) ) | 
						
							| 11 |  | 7nn0 |  |-  7 e. NN0 | 
						
							| 12 | 3 | nn0rei |  |-  ; 1 5 e. RR | 
						
							| 13 |  | 8re |  |-  8 e. RR | 
						
							| 14 |  | absreim |  |-  ( ( ; 1 5 e. RR /\ 8 e. RR ) -> ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) = ( sqrt ` ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) ) ) | 
						
							| 15 | 12 13 14 | mp2an |  |-  ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) = ( sqrt ` ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) ) | 
						
							| 16 | 4 | sqvali |  |-  ( ; 1 5 ^ 2 ) = ( ; 1 5 x. ; 1 5 ) | 
						
							| 17 |  | eqid |  |-  ; 1 5 = ; 1 5 | 
						
							| 18 | 4 | mullidi |  |-  ( 1 x. ; 1 5 ) = ; 1 5 | 
						
							| 19 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 20 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 21 | 11 | nn0cni |  |-  7 e. CC | 
						
							| 22 | 2 | nn0cni |  |-  5 e. CC | 
						
							| 23 |  | 7p5e12 |  |-  ( 7 + 5 ) = ; 1 2 | 
						
							| 24 | 21 22 23 | addcomli |  |-  ( 5 + 7 ) = ; 1 2 | 
						
							| 25 | 1 2 11 18 19 20 24 | decaddci |  |-  ( ( 1 x. ; 1 5 ) + 7 ) = ; 2 2 | 
						
							| 26 | 22 | mulridi |  |-  ( 5 x. 1 ) = 5 | 
						
							| 27 | 26 | oveq1i |  |-  ( ( 5 x. 1 ) + 2 ) = ( 5 + 2 ) | 
						
							| 28 |  | 5p2e7 |  |-  ( 5 + 2 ) = 7 | 
						
							| 29 | 27 28 | eqtri |  |-  ( ( 5 x. 1 ) + 2 ) = 7 | 
						
							| 30 |  | 5t5e25 |  |-  ( 5 x. 5 ) = ; 2 5 | 
						
							| 31 | 2 1 2 17 2 20 29 30 | decmul2c |  |-  ( 5 x. ; 1 5 ) = ; 7 5 | 
						
							| 32 | 3 1 2 17 2 11 25 31 | decmul1c |  |-  ( ; 1 5 x. ; 1 5 ) = ; ; 2 2 5 | 
						
							| 33 | 16 32 | eqtri |  |-  ( ; 1 5 ^ 2 ) = ; ; 2 2 5 | 
						
							| 34 | 6 | sqvali |  |-  ( 8 ^ 2 ) = ( 8 x. 8 ) | 
						
							| 35 |  | 8t8e64 |  |-  ( 8 x. 8 ) = ; 6 4 | 
						
							| 36 | 34 35 | eqtri |  |-  ( 8 ^ 2 ) = ; 6 4 | 
						
							| 37 | 33 36 | oveq12i |  |-  ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) = ( ; ; 2 2 5 + ; 6 4 ) | 
						
							| 38 | 20 20 | deccl |  |-  ; 2 2 e. NN0 | 
						
							| 39 |  | 6nn0 |  |-  6 e. NN0 | 
						
							| 40 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 41 |  | eqid |  |-  ; ; 2 2 5 = ; ; 2 2 5 | 
						
							| 42 |  | eqid |  |-  ; 6 4 = ; 6 4 | 
						
							| 43 |  | eqid |  |-  ; 2 2 = ; 2 2 | 
						
							| 44 | 39 | nn0cni |  |-  6 e. CC | 
						
							| 45 |  | 2cn |  |-  2 e. CC | 
						
							| 46 |  | 6p2e8 |  |-  ( 6 + 2 ) = 8 | 
						
							| 47 | 44 45 46 | addcomli |  |-  ( 2 + 6 ) = 8 | 
						
							| 48 | 20 20 39 43 47 | decaddi |  |-  ( ; 2 2 + 6 ) = ; 2 8 | 
						
							| 49 |  | 5p4e9 |  |-  ( 5 + 4 ) = 9 | 
						
							| 50 | 38 2 39 40 41 42 48 49 | decadd |  |-  ( ; ; 2 2 5 + ; 6 4 ) = ; ; 2 8 9 | 
						
							| 51 | 1 11 | deccl |  |-  ; 1 7 e. NN0 | 
						
							| 52 | 51 | nn0cni |  |-  ; 1 7 e. CC | 
						
							| 53 | 52 | sqvali |  |-  ( ; 1 7 ^ 2 ) = ( ; 1 7 x. ; 1 7 ) | 
						
							| 54 |  | eqid |  |-  ; 1 7 = ; 1 7 | 
						
							| 55 |  | 9nn0 |  |-  9 e. NN0 | 
						
							| 56 | 1 1 | deccl |  |-  ; 1 1 e. NN0 | 
						
							| 57 | 52 | mullidi |  |-  ( 1 x. ; 1 7 ) = ; 1 7 | 
						
							| 58 |  | eqid |  |-  ; 1 1 = ; 1 1 | 
						
							| 59 |  | 7p1e8 |  |-  ( 7 + 1 ) = 8 | 
						
							| 60 | 1 11 1 1 57 58 19 59 | decadd |  |-  ( ( 1 x. ; 1 7 ) + ; 1 1 ) = ; 2 8 | 
						
							| 61 | 21 | mulridi |  |-  ( 7 x. 1 ) = 7 | 
						
							| 62 | 61 | oveq1i |  |-  ( ( 7 x. 1 ) + 4 ) = ( 7 + 4 ) | 
						
							| 63 |  | 7p4e11 |  |-  ( 7 + 4 ) = ; 1 1 | 
						
							| 64 | 62 63 | eqtri |  |-  ( ( 7 x. 1 ) + 4 ) = ; 1 1 | 
						
							| 65 |  | 7t7e49 |  |-  ( 7 x. 7 ) = ; 4 9 | 
						
							| 66 | 11 1 11 54 55 40 64 65 | decmul2c |  |-  ( 7 x. ; 1 7 ) = ; ; 1 1 9 | 
						
							| 67 | 51 1 11 54 55 56 60 66 | decmul1c |  |-  ( ; 1 7 x. ; 1 7 ) = ; ; 2 8 9 | 
						
							| 68 | 53 67 | eqtr2i |  |-  ; ; 2 8 9 = ( ; 1 7 ^ 2 ) | 
						
							| 69 | 37 50 68 | 3eqtri |  |-  ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) = ( ; 1 7 ^ 2 ) | 
						
							| 70 | 69 | fveq2i |  |-  ( sqrt ` ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) ) = ( sqrt ` ( ; 1 7 ^ 2 ) ) | 
						
							| 71 | 51 | nn0ge0i |  |-  0 <_ ; 1 7 | 
						
							| 72 | 51 | nn0rei |  |-  ; 1 7 e. RR | 
						
							| 73 | 72 | sqrtsqi |  |-  ( 0 <_ ; 1 7 -> ( sqrt ` ( ; 1 7 ^ 2 ) ) = ; 1 7 ) | 
						
							| 74 | 71 73 | ax-mp |  |-  ( sqrt ` ( ; 1 7 ^ 2 ) ) = ; 1 7 | 
						
							| 75 | 15 70 74 | 3eqtri |  |-  ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) = ; 1 7 | 
						
							| 76 | 12 13 | crrei |  |-  ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) = ; 1 5 | 
						
							| 77 | 19 | oveq1i |  |-  ( ( 1 + 1 ) + 1 ) = ( 2 + 1 ) | 
						
							| 78 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 79 | 77 78 | eqtri |  |-  ( ( 1 + 1 ) + 1 ) = 3 | 
						
							| 80 | 1 11 1 2 75 76 79 20 23 | decaddc |  |-  ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) + ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) = ; 3 2 | 
						
							| 81 | 80 | oveq1i |  |-  ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) + ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) = ( ; 3 2 / 2 ) | 
						
							| 82 |  | eqid |  |-  ; 1 6 = ; 1 6 | 
						
							| 83 | 45 | mulridi |  |-  ( 2 x. 1 ) = 2 | 
						
							| 84 | 83 | oveq1i |  |-  ( ( 2 x. 1 ) + 1 ) = ( 2 + 1 ) | 
						
							| 85 | 84 78 | eqtri |  |-  ( ( 2 x. 1 ) + 1 ) = 3 | 
						
							| 86 |  | 6t2e12 |  |-  ( 6 x. 2 ) = ; 1 2 | 
						
							| 87 | 44 45 86 | mulcomli |  |-  ( 2 x. 6 ) = ; 1 2 | 
						
							| 88 | 20 1 39 82 20 1 85 87 | decmul2c |  |-  ( 2 x. ; 1 6 ) = ; 3 2 | 
						
							| 89 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 90 | 89 20 | deccl |  |-  ; 3 2 e. NN0 | 
						
							| 91 | 90 | nn0cni |  |-  ; 3 2 e. CC | 
						
							| 92 | 1 39 | deccl |  |-  ; 1 6 e. NN0 | 
						
							| 93 | 92 | nn0cni |  |-  ; 1 6 e. CC | 
						
							| 94 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 95 | 91 45 93 94 | divmuli |  |-  ( ( ; 3 2 / 2 ) = ; 1 6 <-> ( 2 x. ; 1 6 ) = ; 3 2 ) | 
						
							| 96 | 88 95 | mpbir |  |-  ( ; 3 2 / 2 ) = ; 1 6 | 
						
							| 97 | 40 | nn0cni |  |-  4 e. CC | 
						
							| 98 | 97 | sqvali |  |-  ( 4 ^ 2 ) = ( 4 x. 4 ) | 
						
							| 99 |  | 4t4e16 |  |-  ( 4 x. 4 ) = ; 1 6 | 
						
							| 100 | 98 99 | eqtr2i |  |-  ; 1 6 = ( 4 ^ 2 ) | 
						
							| 101 | 81 96 100 | 3eqtri |  |-  ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) + ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) = ( 4 ^ 2 ) | 
						
							| 102 | 101 | fveq2i |  |-  ( sqrt ` ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) + ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) ) = ( sqrt ` ( 4 ^ 2 ) ) | 
						
							| 103 | 40 | nn0ge0i |  |-  0 <_ 4 | 
						
							| 104 | 40 | nn0rei |  |-  4 e. RR | 
						
							| 105 | 104 | sqrtsqi |  |-  ( 0 <_ 4 -> ( sqrt ` ( 4 ^ 2 ) ) = 4 ) | 
						
							| 106 | 103 105 | ax-mp |  |-  ( sqrt ` ( 4 ^ 2 ) ) = 4 | 
						
							| 107 | 10 102 106 | 3eqtri |  |-  ( Re ` ( sqrt ` ( ; 1 5 + ( _i x. 8 ) ) ) ) = 4 |