| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn0 |
|- 1 e. NN0 |
| 2 |
|
5nn0 |
|- 5 e. NN0 |
| 3 |
1 2
|
deccl |
|- ; 1 5 e. NN0 |
| 4 |
3
|
nn0cni |
|- ; 1 5 e. CC |
| 5 |
|
ax-icn |
|- _i e. CC |
| 6 |
|
8cn |
|- 8 e. CC |
| 7 |
5 6
|
mulcli |
|- ( _i x. 8 ) e. CC |
| 8 |
4 7
|
addcli |
|- ( ; 1 5 + ( _i x. 8 ) ) e. CC |
| 9 |
|
resqrtval |
|- ( ( ; 1 5 + ( _i x. 8 ) ) e. CC -> ( Re ` ( sqrt ` ( ; 1 5 + ( _i x. 8 ) ) ) ) = ( sqrt ` ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) + ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) ) ) |
| 10 |
8 9
|
ax-mp |
|- ( Re ` ( sqrt ` ( ; 1 5 + ( _i x. 8 ) ) ) ) = ( sqrt ` ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) + ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) ) |
| 11 |
|
7nn0 |
|- 7 e. NN0 |
| 12 |
3
|
nn0rei |
|- ; 1 5 e. RR |
| 13 |
|
8re |
|- 8 e. RR |
| 14 |
|
absreim |
|- ( ( ; 1 5 e. RR /\ 8 e. RR ) -> ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) = ( sqrt ` ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) ) ) |
| 15 |
12 13 14
|
mp2an |
|- ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) = ( sqrt ` ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) ) |
| 16 |
4
|
sqvali |
|- ( ; 1 5 ^ 2 ) = ( ; 1 5 x. ; 1 5 ) |
| 17 |
|
eqid |
|- ; 1 5 = ; 1 5 |
| 18 |
4
|
mullidi |
|- ( 1 x. ; 1 5 ) = ; 1 5 |
| 19 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 20 |
|
2nn0 |
|- 2 e. NN0 |
| 21 |
11
|
nn0cni |
|- 7 e. CC |
| 22 |
2
|
nn0cni |
|- 5 e. CC |
| 23 |
|
7p5e12 |
|- ( 7 + 5 ) = ; 1 2 |
| 24 |
21 22 23
|
addcomli |
|- ( 5 + 7 ) = ; 1 2 |
| 25 |
1 2 11 18 19 20 24
|
decaddci |
|- ( ( 1 x. ; 1 5 ) + 7 ) = ; 2 2 |
| 26 |
22
|
mulridi |
|- ( 5 x. 1 ) = 5 |
| 27 |
26
|
oveq1i |
|- ( ( 5 x. 1 ) + 2 ) = ( 5 + 2 ) |
| 28 |
|
5p2e7 |
|- ( 5 + 2 ) = 7 |
| 29 |
27 28
|
eqtri |
|- ( ( 5 x. 1 ) + 2 ) = 7 |
| 30 |
|
5t5e25 |
|- ( 5 x. 5 ) = ; 2 5 |
| 31 |
2 1 2 17 2 20 29 30
|
decmul2c |
|- ( 5 x. ; 1 5 ) = ; 7 5 |
| 32 |
3 1 2 17 2 11 25 31
|
decmul1c |
|- ( ; 1 5 x. ; 1 5 ) = ; ; 2 2 5 |
| 33 |
16 32
|
eqtri |
|- ( ; 1 5 ^ 2 ) = ; ; 2 2 5 |
| 34 |
6
|
sqvali |
|- ( 8 ^ 2 ) = ( 8 x. 8 ) |
| 35 |
|
8t8e64 |
|- ( 8 x. 8 ) = ; 6 4 |
| 36 |
34 35
|
eqtri |
|- ( 8 ^ 2 ) = ; 6 4 |
| 37 |
33 36
|
oveq12i |
|- ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) = ( ; ; 2 2 5 + ; 6 4 ) |
| 38 |
20 20
|
deccl |
|- ; 2 2 e. NN0 |
| 39 |
|
6nn0 |
|- 6 e. NN0 |
| 40 |
|
4nn0 |
|- 4 e. NN0 |
| 41 |
|
eqid |
|- ; ; 2 2 5 = ; ; 2 2 5 |
| 42 |
|
eqid |
|- ; 6 4 = ; 6 4 |
| 43 |
|
eqid |
|- ; 2 2 = ; 2 2 |
| 44 |
39
|
nn0cni |
|- 6 e. CC |
| 45 |
|
2cn |
|- 2 e. CC |
| 46 |
|
6p2e8 |
|- ( 6 + 2 ) = 8 |
| 47 |
44 45 46
|
addcomli |
|- ( 2 + 6 ) = 8 |
| 48 |
20 20 39 43 47
|
decaddi |
|- ( ; 2 2 + 6 ) = ; 2 8 |
| 49 |
|
5p4e9 |
|- ( 5 + 4 ) = 9 |
| 50 |
38 2 39 40 41 42 48 49
|
decadd |
|- ( ; ; 2 2 5 + ; 6 4 ) = ; ; 2 8 9 |
| 51 |
1 11
|
deccl |
|- ; 1 7 e. NN0 |
| 52 |
51
|
nn0cni |
|- ; 1 7 e. CC |
| 53 |
52
|
sqvali |
|- ( ; 1 7 ^ 2 ) = ( ; 1 7 x. ; 1 7 ) |
| 54 |
|
eqid |
|- ; 1 7 = ; 1 7 |
| 55 |
|
9nn0 |
|- 9 e. NN0 |
| 56 |
1 1
|
deccl |
|- ; 1 1 e. NN0 |
| 57 |
52
|
mullidi |
|- ( 1 x. ; 1 7 ) = ; 1 7 |
| 58 |
|
eqid |
|- ; 1 1 = ; 1 1 |
| 59 |
|
7p1e8 |
|- ( 7 + 1 ) = 8 |
| 60 |
1 11 1 1 57 58 19 59
|
decadd |
|- ( ( 1 x. ; 1 7 ) + ; 1 1 ) = ; 2 8 |
| 61 |
21
|
mulridi |
|- ( 7 x. 1 ) = 7 |
| 62 |
61
|
oveq1i |
|- ( ( 7 x. 1 ) + 4 ) = ( 7 + 4 ) |
| 63 |
|
7p4e11 |
|- ( 7 + 4 ) = ; 1 1 |
| 64 |
62 63
|
eqtri |
|- ( ( 7 x. 1 ) + 4 ) = ; 1 1 |
| 65 |
|
7t7e49 |
|- ( 7 x. 7 ) = ; 4 9 |
| 66 |
11 1 11 54 55 40 64 65
|
decmul2c |
|- ( 7 x. ; 1 7 ) = ; ; 1 1 9 |
| 67 |
51 1 11 54 55 56 60 66
|
decmul1c |
|- ( ; 1 7 x. ; 1 7 ) = ; ; 2 8 9 |
| 68 |
53 67
|
eqtr2i |
|- ; ; 2 8 9 = ( ; 1 7 ^ 2 ) |
| 69 |
37 50 68
|
3eqtri |
|- ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) = ( ; 1 7 ^ 2 ) |
| 70 |
69
|
fveq2i |
|- ( sqrt ` ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) ) = ( sqrt ` ( ; 1 7 ^ 2 ) ) |
| 71 |
51
|
nn0ge0i |
|- 0 <_ ; 1 7 |
| 72 |
51
|
nn0rei |
|- ; 1 7 e. RR |
| 73 |
72
|
sqrtsqi |
|- ( 0 <_ ; 1 7 -> ( sqrt ` ( ; 1 7 ^ 2 ) ) = ; 1 7 ) |
| 74 |
71 73
|
ax-mp |
|- ( sqrt ` ( ; 1 7 ^ 2 ) ) = ; 1 7 |
| 75 |
15 70 74
|
3eqtri |
|- ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) = ; 1 7 |
| 76 |
12 13
|
crrei |
|- ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) = ; 1 5 |
| 77 |
19
|
oveq1i |
|- ( ( 1 + 1 ) + 1 ) = ( 2 + 1 ) |
| 78 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 79 |
77 78
|
eqtri |
|- ( ( 1 + 1 ) + 1 ) = 3 |
| 80 |
1 11 1 2 75 76 79 20 23
|
decaddc |
|- ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) + ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) = ; 3 2 |
| 81 |
80
|
oveq1i |
|- ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) + ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) = ( ; 3 2 / 2 ) |
| 82 |
|
eqid |
|- ; 1 6 = ; 1 6 |
| 83 |
45
|
mulridi |
|- ( 2 x. 1 ) = 2 |
| 84 |
83
|
oveq1i |
|- ( ( 2 x. 1 ) + 1 ) = ( 2 + 1 ) |
| 85 |
84 78
|
eqtri |
|- ( ( 2 x. 1 ) + 1 ) = 3 |
| 86 |
|
6t2e12 |
|- ( 6 x. 2 ) = ; 1 2 |
| 87 |
44 45 86
|
mulcomli |
|- ( 2 x. 6 ) = ; 1 2 |
| 88 |
20 1 39 82 20 1 85 87
|
decmul2c |
|- ( 2 x. ; 1 6 ) = ; 3 2 |
| 89 |
|
3nn0 |
|- 3 e. NN0 |
| 90 |
89 20
|
deccl |
|- ; 3 2 e. NN0 |
| 91 |
90
|
nn0cni |
|- ; 3 2 e. CC |
| 92 |
1 39
|
deccl |
|- ; 1 6 e. NN0 |
| 93 |
92
|
nn0cni |
|- ; 1 6 e. CC |
| 94 |
|
2ne0 |
|- 2 =/= 0 |
| 95 |
91 45 93 94
|
divmuli |
|- ( ( ; 3 2 / 2 ) = ; 1 6 <-> ( 2 x. ; 1 6 ) = ; 3 2 ) |
| 96 |
88 95
|
mpbir |
|- ( ; 3 2 / 2 ) = ; 1 6 |
| 97 |
40
|
nn0cni |
|- 4 e. CC |
| 98 |
97
|
sqvali |
|- ( 4 ^ 2 ) = ( 4 x. 4 ) |
| 99 |
|
4t4e16 |
|- ( 4 x. 4 ) = ; 1 6 |
| 100 |
98 99
|
eqtr2i |
|- ; 1 6 = ( 4 ^ 2 ) |
| 101 |
81 96 100
|
3eqtri |
|- ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) + ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) = ( 4 ^ 2 ) |
| 102 |
101
|
fveq2i |
|- ( sqrt ` ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) + ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) ) = ( sqrt ` ( 4 ^ 2 ) ) |
| 103 |
40
|
nn0ge0i |
|- 0 <_ 4 |
| 104 |
40
|
nn0rei |
|- 4 e. RR |
| 105 |
104
|
sqrtsqi |
|- ( 0 <_ 4 -> ( sqrt ` ( 4 ^ 2 ) ) = 4 ) |
| 106 |
103 105
|
ax-mp |
|- ( sqrt ` ( 4 ^ 2 ) ) = 4 |
| 107 |
10 102 106
|
3eqtri |
|- ( Re ` ( sqrt ` ( ; 1 5 + ( _i x. 8 ) ) ) ) = 4 |