Description: Example for resqrtval . (Contributed by RP, 21-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resqrtvalex | ⊢ ( ℜ ‘ ( √ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) = 4 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 2 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 3 | 1 2 | deccl | ⊢ ; 1 5 ∈ ℕ0 | 
| 4 | 3 | nn0cni | ⊢ ; 1 5 ∈ ℂ | 
| 5 | ax-icn | ⊢ i ∈ ℂ | |
| 6 | 8cn | ⊢ 8 ∈ ℂ | |
| 7 | 5 6 | mulcli | ⊢ ( i · 8 ) ∈ ℂ | 
| 8 | 4 7 | addcli | ⊢ ( ; 1 5 + ( i · 8 ) ) ∈ ℂ | 
| 9 | resqrtval | ⊢ ( ( ; 1 5 + ( i · 8 ) ) ∈ ℂ → ( ℜ ‘ ( √ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) = ( √ ‘ ( ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) + ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) / 2 ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( ℜ ‘ ( √ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) = ( √ ‘ ( ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) + ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) / 2 ) ) | 
| 11 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 12 | 3 | nn0rei | ⊢ ; 1 5 ∈ ℝ | 
| 13 | 8re | ⊢ 8 ∈ ℝ | |
| 14 | absreim | ⊢ ( ( ; 1 5 ∈ ℝ ∧ 8 ∈ ℝ ) → ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) = ( √ ‘ ( ( ; 1 5 ↑ 2 ) + ( 8 ↑ 2 ) ) ) ) | |
| 15 | 12 13 14 | mp2an | ⊢ ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) = ( √ ‘ ( ( ; 1 5 ↑ 2 ) + ( 8 ↑ 2 ) ) ) | 
| 16 | 4 | sqvali | ⊢ ( ; 1 5 ↑ 2 ) = ( ; 1 5 · ; 1 5 ) | 
| 17 | eqid | ⊢ ; 1 5 = ; 1 5 | |
| 18 | 4 | mullidi | ⊢ ( 1 · ; 1 5 ) = ; 1 5 | 
| 19 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 20 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 21 | 11 | nn0cni | ⊢ 7 ∈ ℂ | 
| 22 | 2 | nn0cni | ⊢ 5 ∈ ℂ | 
| 23 | 7p5e12 | ⊢ ( 7 + 5 ) = ; 1 2 | |
| 24 | 21 22 23 | addcomli | ⊢ ( 5 + 7 ) = ; 1 2 | 
| 25 | 1 2 11 18 19 20 24 | decaddci | ⊢ ( ( 1 · ; 1 5 ) + 7 ) = ; 2 2 | 
| 26 | 22 | mulridi | ⊢ ( 5 · 1 ) = 5 | 
| 27 | 26 | oveq1i | ⊢ ( ( 5 · 1 ) + 2 ) = ( 5 + 2 ) | 
| 28 | 5p2e7 | ⊢ ( 5 + 2 ) = 7 | |
| 29 | 27 28 | eqtri | ⊢ ( ( 5 · 1 ) + 2 ) = 7 | 
| 30 | 5t5e25 | ⊢ ( 5 · 5 ) = ; 2 5 | |
| 31 | 2 1 2 17 2 20 29 30 | decmul2c | ⊢ ( 5 · ; 1 5 ) = ; 7 5 | 
| 32 | 3 1 2 17 2 11 25 31 | decmul1c | ⊢ ( ; 1 5 · ; 1 5 ) = ; ; 2 2 5 | 
| 33 | 16 32 | eqtri | ⊢ ( ; 1 5 ↑ 2 ) = ; ; 2 2 5 | 
| 34 | 6 | sqvali | ⊢ ( 8 ↑ 2 ) = ( 8 · 8 ) | 
| 35 | 8t8e64 | ⊢ ( 8 · 8 ) = ; 6 4 | |
| 36 | 34 35 | eqtri | ⊢ ( 8 ↑ 2 ) = ; 6 4 | 
| 37 | 33 36 | oveq12i | ⊢ ( ( ; 1 5 ↑ 2 ) + ( 8 ↑ 2 ) ) = ( ; ; 2 2 5 + ; 6 4 ) | 
| 38 | 20 20 | deccl | ⊢ ; 2 2 ∈ ℕ0 | 
| 39 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 40 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 41 | eqid | ⊢ ; ; 2 2 5 = ; ; 2 2 5 | |
| 42 | eqid | ⊢ ; 6 4 = ; 6 4 | |
| 43 | eqid | ⊢ ; 2 2 = ; 2 2 | |
| 44 | 39 | nn0cni | ⊢ 6 ∈ ℂ | 
| 45 | 2cn | ⊢ 2 ∈ ℂ | |
| 46 | 6p2e8 | ⊢ ( 6 + 2 ) = 8 | |
| 47 | 44 45 46 | addcomli | ⊢ ( 2 + 6 ) = 8 | 
| 48 | 20 20 39 43 47 | decaddi | ⊢ ( ; 2 2 + 6 ) = ; 2 8 | 
| 49 | 5p4e9 | ⊢ ( 5 + 4 ) = 9 | |
| 50 | 38 2 39 40 41 42 48 49 | decadd | ⊢ ( ; ; 2 2 5 + ; 6 4 ) = ; ; 2 8 9 | 
| 51 | 1 11 | deccl | ⊢ ; 1 7 ∈ ℕ0 | 
| 52 | 51 | nn0cni | ⊢ ; 1 7 ∈ ℂ | 
| 53 | 52 | sqvali | ⊢ ( ; 1 7 ↑ 2 ) = ( ; 1 7 · ; 1 7 ) | 
| 54 | eqid | ⊢ ; 1 7 = ; 1 7 | |
| 55 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
| 56 | 1 1 | deccl | ⊢ ; 1 1 ∈ ℕ0 | 
| 57 | 52 | mullidi | ⊢ ( 1 · ; 1 7 ) = ; 1 7 | 
| 58 | eqid | ⊢ ; 1 1 = ; 1 1 | |
| 59 | 7p1e8 | ⊢ ( 7 + 1 ) = 8 | |
| 60 | 1 11 1 1 57 58 19 59 | decadd | ⊢ ( ( 1 · ; 1 7 ) + ; 1 1 ) = ; 2 8 | 
| 61 | 21 | mulridi | ⊢ ( 7 · 1 ) = 7 | 
| 62 | 61 | oveq1i | ⊢ ( ( 7 · 1 ) + 4 ) = ( 7 + 4 ) | 
| 63 | 7p4e11 | ⊢ ( 7 + 4 ) = ; 1 1 | |
| 64 | 62 63 | eqtri | ⊢ ( ( 7 · 1 ) + 4 ) = ; 1 1 | 
| 65 | 7t7e49 | ⊢ ( 7 · 7 ) = ; 4 9 | |
| 66 | 11 1 11 54 55 40 64 65 | decmul2c | ⊢ ( 7 · ; 1 7 ) = ; ; 1 1 9 | 
| 67 | 51 1 11 54 55 56 60 66 | decmul1c | ⊢ ( ; 1 7 · ; 1 7 ) = ; ; 2 8 9 | 
| 68 | 53 67 | eqtr2i | ⊢ ; ; 2 8 9 = ( ; 1 7 ↑ 2 ) | 
| 69 | 37 50 68 | 3eqtri | ⊢ ( ( ; 1 5 ↑ 2 ) + ( 8 ↑ 2 ) ) = ( ; 1 7 ↑ 2 ) | 
| 70 | 69 | fveq2i | ⊢ ( √ ‘ ( ( ; 1 5 ↑ 2 ) + ( 8 ↑ 2 ) ) ) = ( √ ‘ ( ; 1 7 ↑ 2 ) ) | 
| 71 | 51 | nn0ge0i | ⊢ 0 ≤ ; 1 7 | 
| 72 | 51 | nn0rei | ⊢ ; 1 7 ∈ ℝ | 
| 73 | 72 | sqrtsqi | ⊢ ( 0 ≤ ; 1 7 → ( √ ‘ ( ; 1 7 ↑ 2 ) ) = ; 1 7 ) | 
| 74 | 71 73 | ax-mp | ⊢ ( √ ‘ ( ; 1 7 ↑ 2 ) ) = ; 1 7 | 
| 75 | 15 70 74 | 3eqtri | ⊢ ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) = ; 1 7 | 
| 76 | 12 13 | crrei | ⊢ ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) = ; 1 5 | 
| 77 | 19 | oveq1i | ⊢ ( ( 1 + 1 ) + 1 ) = ( 2 + 1 ) | 
| 78 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 79 | 77 78 | eqtri | ⊢ ( ( 1 + 1 ) + 1 ) = 3 | 
| 80 | 1 11 1 2 75 76 79 20 23 | decaddc | ⊢ ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) + ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) = ; 3 2 | 
| 81 | 80 | oveq1i | ⊢ ( ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) + ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) / 2 ) = ( ; 3 2 / 2 ) | 
| 82 | eqid | ⊢ ; 1 6 = ; 1 6 | |
| 83 | 45 | mulridi | ⊢ ( 2 · 1 ) = 2 | 
| 84 | 83 | oveq1i | ⊢ ( ( 2 · 1 ) + 1 ) = ( 2 + 1 ) | 
| 85 | 84 78 | eqtri | ⊢ ( ( 2 · 1 ) + 1 ) = 3 | 
| 86 | 6t2e12 | ⊢ ( 6 · 2 ) = ; 1 2 | |
| 87 | 44 45 86 | mulcomli | ⊢ ( 2 · 6 ) = ; 1 2 | 
| 88 | 20 1 39 82 20 1 85 87 | decmul2c | ⊢ ( 2 · ; 1 6 ) = ; 3 2 | 
| 89 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 90 | 89 20 | deccl | ⊢ ; 3 2 ∈ ℕ0 | 
| 91 | 90 | nn0cni | ⊢ ; 3 2 ∈ ℂ | 
| 92 | 1 39 | deccl | ⊢ ; 1 6 ∈ ℕ0 | 
| 93 | 92 | nn0cni | ⊢ ; 1 6 ∈ ℂ | 
| 94 | 2ne0 | ⊢ 2 ≠ 0 | |
| 95 | 91 45 93 94 | divmuli | ⊢ ( ( ; 3 2 / 2 ) = ; 1 6 ↔ ( 2 · ; 1 6 ) = ; 3 2 ) | 
| 96 | 88 95 | mpbir | ⊢ ( ; 3 2 / 2 ) = ; 1 6 | 
| 97 | 40 | nn0cni | ⊢ 4 ∈ ℂ | 
| 98 | 97 | sqvali | ⊢ ( 4 ↑ 2 ) = ( 4 · 4 ) | 
| 99 | 4t4e16 | ⊢ ( 4 · 4 ) = ; 1 6 | |
| 100 | 98 99 | eqtr2i | ⊢ ; 1 6 = ( 4 ↑ 2 ) | 
| 101 | 81 96 100 | 3eqtri | ⊢ ( ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) + ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) / 2 ) = ( 4 ↑ 2 ) | 
| 102 | 101 | fveq2i | ⊢ ( √ ‘ ( ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) + ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) / 2 ) ) = ( √ ‘ ( 4 ↑ 2 ) ) | 
| 103 | 40 | nn0ge0i | ⊢ 0 ≤ 4 | 
| 104 | 40 | nn0rei | ⊢ 4 ∈ ℝ | 
| 105 | 104 | sqrtsqi | ⊢ ( 0 ≤ 4 → ( √ ‘ ( 4 ↑ 2 ) ) = 4 ) | 
| 106 | 103 105 | ax-mp | ⊢ ( √ ‘ ( 4 ↑ 2 ) ) = 4 | 
| 107 | 10 102 106 | 3eqtri | ⊢ ( ℜ ‘ ( √ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) = 4 |