Step |
Hyp |
Ref |
Expression |
1 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
2 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
3 |
1 2
|
deccl |
⊢ ; 1 5 ∈ ℕ0 |
4 |
3
|
nn0cni |
⊢ ; 1 5 ∈ ℂ |
5 |
|
ax-icn |
⊢ i ∈ ℂ |
6 |
|
8cn |
⊢ 8 ∈ ℂ |
7 |
5 6
|
mulcli |
⊢ ( i · 8 ) ∈ ℂ |
8 |
4 7
|
addcli |
⊢ ( ; 1 5 + ( i · 8 ) ) ∈ ℂ |
9 |
|
imsqrtval |
⊢ ( ( ; 1 5 + ( i · 8 ) ) ∈ ℂ → ( ℑ ‘ ( √ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) = ( if ( ( ℑ ‘ ( ; 1 5 + ( i · 8 ) ) ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) − ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) / 2 ) ) ) ) |
10 |
8 9
|
ax-mp |
⊢ ( ℑ ‘ ( √ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) = ( if ( ( ℑ ‘ ( ; 1 5 + ( i · 8 ) ) ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) − ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) / 2 ) ) ) |
11 |
|
8pos |
⊢ 0 < 8 |
12 |
|
0re |
⊢ 0 ∈ ℝ |
13 |
|
8re |
⊢ 8 ∈ ℝ |
14 |
12 13
|
ltnsymi |
⊢ ( 0 < 8 → ¬ 8 < 0 ) |
15 |
3
|
nn0rei |
⊢ ; 1 5 ∈ ℝ |
16 |
15 13
|
crimi |
⊢ ( ℑ ‘ ( ; 1 5 + ( i · 8 ) ) ) = 8 |
17 |
16
|
breq1i |
⊢ ( ( ℑ ‘ ( ; 1 5 + ( i · 8 ) ) ) < 0 ↔ 8 < 0 ) |
18 |
14 17
|
sylnibr |
⊢ ( 0 < 8 → ¬ ( ℑ ‘ ( ; 1 5 + ( i · 8 ) ) ) < 0 ) |
19 |
11 18
|
ax-mp |
⊢ ¬ ( ℑ ‘ ( ; 1 5 + ( i · 8 ) ) ) < 0 |
20 |
19
|
iffalsei |
⊢ if ( ( ℑ ‘ ( ; 1 5 + ( i · 8 ) ) ) < 0 , - 1 , 1 ) = 1 |
21 |
|
absreim |
⊢ ( ( ; 1 5 ∈ ℝ ∧ 8 ∈ ℝ ) → ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) = ( √ ‘ ( ( ; 1 5 ↑ 2 ) + ( 8 ↑ 2 ) ) ) ) |
22 |
15 13 21
|
mp2an |
⊢ ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) = ( √ ‘ ( ( ; 1 5 ↑ 2 ) + ( 8 ↑ 2 ) ) ) |
23 |
4
|
sqvali |
⊢ ( ; 1 5 ↑ 2 ) = ( ; 1 5 · ; 1 5 ) |
24 |
|
eqid |
⊢ ; 1 5 = ; 1 5 |
25 |
|
7nn0 |
⊢ 7 ∈ ℕ0 |
26 |
4
|
mulid2i |
⊢ ( 1 · ; 1 5 ) = ; 1 5 |
27 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
28 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
29 |
25
|
nn0cni |
⊢ 7 ∈ ℂ |
30 |
2
|
nn0cni |
⊢ 5 ∈ ℂ |
31 |
|
7p5e12 |
⊢ ( 7 + 5 ) = ; 1 2 |
32 |
29 30 31
|
addcomli |
⊢ ( 5 + 7 ) = ; 1 2 |
33 |
1 2 25 26 27 28 32
|
decaddci |
⊢ ( ( 1 · ; 1 5 ) + 7 ) = ; 2 2 |
34 |
30
|
mulid1i |
⊢ ( 5 · 1 ) = 5 |
35 |
34
|
oveq1i |
⊢ ( ( 5 · 1 ) + 2 ) = ( 5 + 2 ) |
36 |
|
5p2e7 |
⊢ ( 5 + 2 ) = 7 |
37 |
35 36
|
eqtri |
⊢ ( ( 5 · 1 ) + 2 ) = 7 |
38 |
|
5t5e25 |
⊢ ( 5 · 5 ) = ; 2 5 |
39 |
2 1 2 24 2 28 37 38
|
decmul2c |
⊢ ( 5 · ; 1 5 ) = ; 7 5 |
40 |
3 1 2 24 2 25 33 39
|
decmul1c |
⊢ ( ; 1 5 · ; 1 5 ) = ; ; 2 2 5 |
41 |
23 40
|
eqtri |
⊢ ( ; 1 5 ↑ 2 ) = ; ; 2 2 5 |
42 |
6
|
sqvali |
⊢ ( 8 ↑ 2 ) = ( 8 · 8 ) |
43 |
|
8t8e64 |
⊢ ( 8 · 8 ) = ; 6 4 |
44 |
42 43
|
eqtri |
⊢ ( 8 ↑ 2 ) = ; 6 4 |
45 |
41 44
|
oveq12i |
⊢ ( ( ; 1 5 ↑ 2 ) + ( 8 ↑ 2 ) ) = ( ; ; 2 2 5 + ; 6 4 ) |
46 |
28 28
|
deccl |
⊢ ; 2 2 ∈ ℕ0 |
47 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
48 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
49 |
|
eqid |
⊢ ; ; 2 2 5 = ; ; 2 2 5 |
50 |
|
eqid |
⊢ ; 6 4 = ; 6 4 |
51 |
|
eqid |
⊢ ; 2 2 = ; 2 2 |
52 |
47
|
nn0cni |
⊢ 6 ∈ ℂ |
53 |
28
|
nn0cni |
⊢ 2 ∈ ℂ |
54 |
|
6p2e8 |
⊢ ( 6 + 2 ) = 8 |
55 |
52 53 54
|
addcomli |
⊢ ( 2 + 6 ) = 8 |
56 |
28 28 47 51 55
|
decaddi |
⊢ ( ; 2 2 + 6 ) = ; 2 8 |
57 |
|
5p4e9 |
⊢ ( 5 + 4 ) = 9 |
58 |
46 2 47 48 49 50 56 57
|
decadd |
⊢ ( ; ; 2 2 5 + ; 6 4 ) = ; ; 2 8 9 |
59 |
1 25
|
deccl |
⊢ ; 1 7 ∈ ℕ0 |
60 |
59
|
nn0cni |
⊢ ; 1 7 ∈ ℂ |
61 |
60
|
sqvali |
⊢ ( ; 1 7 ↑ 2 ) = ( ; 1 7 · ; 1 7 ) |
62 |
|
eqid |
⊢ ; 1 7 = ; 1 7 |
63 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
64 |
1 1
|
deccl |
⊢ ; 1 1 ∈ ℕ0 |
65 |
60
|
mulid2i |
⊢ ( 1 · ; 1 7 ) = ; 1 7 |
66 |
|
eqid |
⊢ ; 1 1 = ; 1 1 |
67 |
|
7p1e8 |
⊢ ( 7 + 1 ) = 8 |
68 |
1 25 1 1 65 66 27 67
|
decadd |
⊢ ( ( 1 · ; 1 7 ) + ; 1 1 ) = ; 2 8 |
69 |
29
|
mulid1i |
⊢ ( 7 · 1 ) = 7 |
70 |
69
|
oveq1i |
⊢ ( ( 7 · 1 ) + 4 ) = ( 7 + 4 ) |
71 |
|
7p4e11 |
⊢ ( 7 + 4 ) = ; 1 1 |
72 |
70 71
|
eqtri |
⊢ ( ( 7 · 1 ) + 4 ) = ; 1 1 |
73 |
|
7t7e49 |
⊢ ( 7 · 7 ) = ; 4 9 |
74 |
25 1 25 62 63 48 72 73
|
decmul2c |
⊢ ( 7 · ; 1 7 ) = ; ; 1 1 9 |
75 |
59 1 25 62 63 64 68 74
|
decmul1c |
⊢ ( ; 1 7 · ; 1 7 ) = ; ; 2 8 9 |
76 |
61 75
|
eqtr2i |
⊢ ; ; 2 8 9 = ( ; 1 7 ↑ 2 ) |
77 |
45 58 76
|
3eqtri |
⊢ ( ( ; 1 5 ↑ 2 ) + ( 8 ↑ 2 ) ) = ( ; 1 7 ↑ 2 ) |
78 |
77
|
fveq2i |
⊢ ( √ ‘ ( ( ; 1 5 ↑ 2 ) + ( 8 ↑ 2 ) ) ) = ( √ ‘ ( ; 1 7 ↑ 2 ) ) |
79 |
59
|
nn0ge0i |
⊢ 0 ≤ ; 1 7 |
80 |
59
|
nn0rei |
⊢ ; 1 7 ∈ ℝ |
81 |
80
|
sqrtsqi |
⊢ ( 0 ≤ ; 1 7 → ( √ ‘ ( ; 1 7 ↑ 2 ) ) = ; 1 7 ) |
82 |
79 81
|
ax-mp |
⊢ ( √ ‘ ( ; 1 7 ↑ 2 ) ) = ; 1 7 |
83 |
22 78 82
|
3eqtri |
⊢ ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) = ; 1 7 |
84 |
15 13
|
crrei |
⊢ ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) = ; 1 5 |
85 |
83 84
|
oveq12i |
⊢ ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) − ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) = ( ; 1 7 − ; 1 5 ) |
86 |
1 2 28 24 36
|
decaddi |
⊢ ( ; 1 5 + 2 ) = ; 1 7 |
87 |
60 4 53 86
|
subaddrii |
⊢ ( ; 1 7 − ; 1 5 ) = 2 |
88 |
85 87
|
eqtri |
⊢ ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) − ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) = 2 |
89 |
88
|
oveq1i |
⊢ ( ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) − ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) / 2 ) = ( 2 / 2 ) |
90 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
91 |
89 90
|
eqtri |
⊢ ( ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) − ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) / 2 ) = 1 |
92 |
91
|
fveq2i |
⊢ ( √ ‘ ( ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) − ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) / 2 ) ) = ( √ ‘ 1 ) |
93 |
|
sqrt1 |
⊢ ( √ ‘ 1 ) = 1 |
94 |
92 93
|
eqtri |
⊢ ( √ ‘ ( ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) − ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) / 2 ) ) = 1 |
95 |
20 94
|
oveq12i |
⊢ ( if ( ( ℑ ‘ ( ; 1 5 + ( i · 8 ) ) ) < 0 , - 1 , 1 ) · ( √ ‘ ( ( ( abs ‘ ( ; 1 5 + ( i · 8 ) ) ) − ( ℜ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) / 2 ) ) ) = ( 1 · 1 ) |
96 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
97 |
10 95 96
|
3eqtri |
⊢ ( ℑ ‘ ( √ ‘ ( ; 1 5 + ( i · 8 ) ) ) ) = 1 |