| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 2 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 3 | 1 2 | deccl | ⊢ ; 1 5  ∈  ℕ0 | 
						
							| 4 | 3 | nn0cni | ⊢ ; 1 5  ∈  ℂ | 
						
							| 5 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 6 |  | 8cn | ⊢ 8  ∈  ℂ | 
						
							| 7 | 5 6 | mulcli | ⊢ ( i  ·  8 )  ∈  ℂ | 
						
							| 8 | 4 7 | addcli | ⊢ ( ; 1 5  +  ( i  ·  8 ) )  ∈  ℂ | 
						
							| 9 |  | imsqrtval | ⊢ ( ( ; 1 5  +  ( i  ·  8 ) )  ∈  ℂ  →  ( ℑ ‘ ( √ ‘ ( ; 1 5  +  ( i  ·  8 ) ) ) )  =  ( if ( ( ℑ ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  −  ( ℜ ‘ ( ; 1 5  +  ( i  ·  8 ) ) ) )  /  2 ) ) ) ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ( ℑ ‘ ( √ ‘ ( ; 1 5  +  ( i  ·  8 ) ) ) )  =  ( if ( ( ℑ ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  −  ( ℜ ‘ ( ; 1 5  +  ( i  ·  8 ) ) ) )  /  2 ) ) ) | 
						
							| 11 |  | 8pos | ⊢ 0  <  8 | 
						
							| 12 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 13 |  | 8re | ⊢ 8  ∈  ℝ | 
						
							| 14 | 12 13 | ltnsymi | ⊢ ( 0  <  8  →  ¬  8  <  0 ) | 
						
							| 15 | 3 | nn0rei | ⊢ ; 1 5  ∈  ℝ | 
						
							| 16 | 15 13 | crimi | ⊢ ( ℑ ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  =  8 | 
						
							| 17 | 16 | breq1i | ⊢ ( ( ℑ ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  <  0  ↔  8  <  0 ) | 
						
							| 18 | 14 17 | sylnibr | ⊢ ( 0  <  8  →  ¬  ( ℑ ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  <  0 ) | 
						
							| 19 | 11 18 | ax-mp | ⊢ ¬  ( ℑ ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  <  0 | 
						
							| 20 | 19 | iffalsei | ⊢ if ( ( ℑ ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  <  0 ,  - 1 ,  1 )  =  1 | 
						
							| 21 |  | absreim | ⊢ ( ( ; 1 5  ∈  ℝ  ∧  8  ∈  ℝ )  →  ( abs ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  =  ( √ ‘ ( ( ; 1 5 ↑ 2 )  +  ( 8 ↑ 2 ) ) ) ) | 
						
							| 22 | 15 13 21 | mp2an | ⊢ ( abs ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  =  ( √ ‘ ( ( ; 1 5 ↑ 2 )  +  ( 8 ↑ 2 ) ) ) | 
						
							| 23 | 4 | sqvali | ⊢ ( ; 1 5 ↑ 2 )  =  ( ; 1 5  ·  ; 1 5 ) | 
						
							| 24 |  | eqid | ⊢ ; 1 5  =  ; 1 5 | 
						
							| 25 |  | 7nn0 | ⊢ 7  ∈  ℕ0 | 
						
							| 26 | 4 | mullidi | ⊢ ( 1  ·  ; 1 5 )  =  ; 1 5 | 
						
							| 27 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 28 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 29 | 25 | nn0cni | ⊢ 7  ∈  ℂ | 
						
							| 30 | 2 | nn0cni | ⊢ 5  ∈  ℂ | 
						
							| 31 |  | 7p5e12 | ⊢ ( 7  +  5 )  =  ; 1 2 | 
						
							| 32 | 29 30 31 | addcomli | ⊢ ( 5  +  7 )  =  ; 1 2 | 
						
							| 33 | 1 2 25 26 27 28 32 | decaddci | ⊢ ( ( 1  ·  ; 1 5 )  +  7 )  =  ; 2 2 | 
						
							| 34 | 30 | mulridi | ⊢ ( 5  ·  1 )  =  5 | 
						
							| 35 | 34 | oveq1i | ⊢ ( ( 5  ·  1 )  +  2 )  =  ( 5  +  2 ) | 
						
							| 36 |  | 5p2e7 | ⊢ ( 5  +  2 )  =  7 | 
						
							| 37 | 35 36 | eqtri | ⊢ ( ( 5  ·  1 )  +  2 )  =  7 | 
						
							| 38 |  | 5t5e25 | ⊢ ( 5  ·  5 )  =  ; 2 5 | 
						
							| 39 | 2 1 2 24 2 28 37 38 | decmul2c | ⊢ ( 5  ·  ; 1 5 )  =  ; 7 5 | 
						
							| 40 | 3 1 2 24 2 25 33 39 | decmul1c | ⊢ ( ; 1 5  ·  ; 1 5 )  =  ; ; 2 2 5 | 
						
							| 41 | 23 40 | eqtri | ⊢ ( ; 1 5 ↑ 2 )  =  ; ; 2 2 5 | 
						
							| 42 | 6 | sqvali | ⊢ ( 8 ↑ 2 )  =  ( 8  ·  8 ) | 
						
							| 43 |  | 8t8e64 | ⊢ ( 8  ·  8 )  =  ; 6 4 | 
						
							| 44 | 42 43 | eqtri | ⊢ ( 8 ↑ 2 )  =  ; 6 4 | 
						
							| 45 | 41 44 | oveq12i | ⊢ ( ( ; 1 5 ↑ 2 )  +  ( 8 ↑ 2 ) )  =  ( ; ; 2 2 5  +  ; 6 4 ) | 
						
							| 46 | 28 28 | deccl | ⊢ ; 2 2  ∈  ℕ0 | 
						
							| 47 |  | 6nn0 | ⊢ 6  ∈  ℕ0 | 
						
							| 48 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 49 |  | eqid | ⊢ ; ; 2 2 5  =  ; ; 2 2 5 | 
						
							| 50 |  | eqid | ⊢ ; 6 4  =  ; 6 4 | 
						
							| 51 |  | eqid | ⊢ ; 2 2  =  ; 2 2 | 
						
							| 52 | 47 | nn0cni | ⊢ 6  ∈  ℂ | 
						
							| 53 | 28 | nn0cni | ⊢ 2  ∈  ℂ | 
						
							| 54 |  | 6p2e8 | ⊢ ( 6  +  2 )  =  8 | 
						
							| 55 | 52 53 54 | addcomli | ⊢ ( 2  +  6 )  =  8 | 
						
							| 56 | 28 28 47 51 55 | decaddi | ⊢ ( ; 2 2  +  6 )  =  ; 2 8 | 
						
							| 57 |  | 5p4e9 | ⊢ ( 5  +  4 )  =  9 | 
						
							| 58 | 46 2 47 48 49 50 56 57 | decadd | ⊢ ( ; ; 2 2 5  +  ; 6 4 )  =  ; ; 2 8 9 | 
						
							| 59 | 1 25 | deccl | ⊢ ; 1 7  ∈  ℕ0 | 
						
							| 60 | 59 | nn0cni | ⊢ ; 1 7  ∈  ℂ | 
						
							| 61 | 60 | sqvali | ⊢ ( ; 1 7 ↑ 2 )  =  ( ; 1 7  ·  ; 1 7 ) | 
						
							| 62 |  | eqid | ⊢ ; 1 7  =  ; 1 7 | 
						
							| 63 |  | 9nn0 | ⊢ 9  ∈  ℕ0 | 
						
							| 64 | 1 1 | deccl | ⊢ ; 1 1  ∈  ℕ0 | 
						
							| 65 | 60 | mullidi | ⊢ ( 1  ·  ; 1 7 )  =  ; 1 7 | 
						
							| 66 |  | eqid | ⊢ ; 1 1  =  ; 1 1 | 
						
							| 67 |  | 7p1e8 | ⊢ ( 7  +  1 )  =  8 | 
						
							| 68 | 1 25 1 1 65 66 27 67 | decadd | ⊢ ( ( 1  ·  ; 1 7 )  +  ; 1 1 )  =  ; 2 8 | 
						
							| 69 | 29 | mulridi | ⊢ ( 7  ·  1 )  =  7 | 
						
							| 70 | 69 | oveq1i | ⊢ ( ( 7  ·  1 )  +  4 )  =  ( 7  +  4 ) | 
						
							| 71 |  | 7p4e11 | ⊢ ( 7  +  4 )  =  ; 1 1 | 
						
							| 72 | 70 71 | eqtri | ⊢ ( ( 7  ·  1 )  +  4 )  =  ; 1 1 | 
						
							| 73 |  | 7t7e49 | ⊢ ( 7  ·  7 )  =  ; 4 9 | 
						
							| 74 | 25 1 25 62 63 48 72 73 | decmul2c | ⊢ ( 7  ·  ; 1 7 )  =  ; ; 1 1 9 | 
						
							| 75 | 59 1 25 62 63 64 68 74 | decmul1c | ⊢ ( ; 1 7  ·  ; 1 7 )  =  ; ; 2 8 9 | 
						
							| 76 | 61 75 | eqtr2i | ⊢ ; ; 2 8 9  =  ( ; 1 7 ↑ 2 ) | 
						
							| 77 | 45 58 76 | 3eqtri | ⊢ ( ( ; 1 5 ↑ 2 )  +  ( 8 ↑ 2 ) )  =  ( ; 1 7 ↑ 2 ) | 
						
							| 78 | 77 | fveq2i | ⊢ ( √ ‘ ( ( ; 1 5 ↑ 2 )  +  ( 8 ↑ 2 ) ) )  =  ( √ ‘ ( ; 1 7 ↑ 2 ) ) | 
						
							| 79 | 59 | nn0ge0i | ⊢ 0  ≤  ; 1 7 | 
						
							| 80 | 59 | nn0rei | ⊢ ; 1 7  ∈  ℝ | 
						
							| 81 | 80 | sqrtsqi | ⊢ ( 0  ≤  ; 1 7  →  ( √ ‘ ( ; 1 7 ↑ 2 ) )  =  ; 1 7 ) | 
						
							| 82 | 79 81 | ax-mp | ⊢ ( √ ‘ ( ; 1 7 ↑ 2 ) )  =  ; 1 7 | 
						
							| 83 | 22 78 82 | 3eqtri | ⊢ ( abs ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  =  ; 1 7 | 
						
							| 84 | 15 13 | crrei | ⊢ ( ℜ ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  =  ; 1 5 | 
						
							| 85 | 83 84 | oveq12i | ⊢ ( ( abs ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  −  ( ℜ ‘ ( ; 1 5  +  ( i  ·  8 ) ) ) )  =  ( ; 1 7  −  ; 1 5 ) | 
						
							| 86 | 1 2 28 24 36 | decaddi | ⊢ ( ; 1 5  +  2 )  =  ; 1 7 | 
						
							| 87 | 60 4 53 86 | subaddrii | ⊢ ( ; 1 7  −  ; 1 5 )  =  2 | 
						
							| 88 | 85 87 | eqtri | ⊢ ( ( abs ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  −  ( ℜ ‘ ( ; 1 5  +  ( i  ·  8 ) ) ) )  =  2 | 
						
							| 89 | 88 | oveq1i | ⊢ ( ( ( abs ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  −  ( ℜ ‘ ( ; 1 5  +  ( i  ·  8 ) ) ) )  /  2 )  =  ( 2  /  2 ) | 
						
							| 90 |  | 2div2e1 | ⊢ ( 2  /  2 )  =  1 | 
						
							| 91 | 89 90 | eqtri | ⊢ ( ( ( abs ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  −  ( ℜ ‘ ( ; 1 5  +  ( i  ·  8 ) ) ) )  /  2 )  =  1 | 
						
							| 92 | 91 | fveq2i | ⊢ ( √ ‘ ( ( ( abs ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  −  ( ℜ ‘ ( ; 1 5  +  ( i  ·  8 ) ) ) )  /  2 ) )  =  ( √ ‘ 1 ) | 
						
							| 93 |  | sqrt1 | ⊢ ( √ ‘ 1 )  =  1 | 
						
							| 94 | 92 93 | eqtri | ⊢ ( √ ‘ ( ( ( abs ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  −  ( ℜ ‘ ( ; 1 5  +  ( i  ·  8 ) ) ) )  /  2 ) )  =  1 | 
						
							| 95 | 20 94 | oveq12i | ⊢ ( if ( ( ℑ ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  <  0 ,  - 1 ,  1 )  ·  ( √ ‘ ( ( ( abs ‘ ( ; 1 5  +  ( i  ·  8 ) ) )  −  ( ℜ ‘ ( ; 1 5  +  ( i  ·  8 ) ) ) )  /  2 ) ) )  =  ( 1  ·  1 ) | 
						
							| 96 |  | 1t1e1 | ⊢ ( 1  ·  1 )  =  1 | 
						
							| 97 | 10 95 96 | 3eqtri | ⊢ ( ℑ ‘ ( √ ‘ ( ; 1 5  +  ( i  ·  8 ) ) ) )  =  1 |