| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 2 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 3 | 1 2 | deccl |  |-  ; 1 5 e. NN0 | 
						
							| 4 | 3 | nn0cni |  |-  ; 1 5 e. CC | 
						
							| 5 |  | ax-icn |  |-  _i e. CC | 
						
							| 6 |  | 8cn |  |-  8 e. CC | 
						
							| 7 | 5 6 | mulcli |  |-  ( _i x. 8 ) e. CC | 
						
							| 8 | 4 7 | addcli |  |-  ( ; 1 5 + ( _i x. 8 ) ) e. CC | 
						
							| 9 |  | imsqrtval |  |-  ( ( ; 1 5 + ( _i x. 8 ) ) e. CC -> ( Im ` ( sqrt ` ( ; 1 5 + ( _i x. 8 ) ) ) ) = ( if ( ( Im ` ( ; 1 5 + ( _i x. 8 ) ) ) < 0 , -u 1 , 1 ) x. ( sqrt ` ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) - ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) ) ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( Im ` ( sqrt ` ( ; 1 5 + ( _i x. 8 ) ) ) ) = ( if ( ( Im ` ( ; 1 5 + ( _i x. 8 ) ) ) < 0 , -u 1 , 1 ) x. ( sqrt ` ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) - ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) ) ) | 
						
							| 11 |  | 8pos |  |-  0 < 8 | 
						
							| 12 |  | 0re |  |-  0 e. RR | 
						
							| 13 |  | 8re |  |-  8 e. RR | 
						
							| 14 | 12 13 | ltnsymi |  |-  ( 0 < 8 -> -. 8 < 0 ) | 
						
							| 15 | 3 | nn0rei |  |-  ; 1 5 e. RR | 
						
							| 16 | 15 13 | crimi |  |-  ( Im ` ( ; 1 5 + ( _i x. 8 ) ) ) = 8 | 
						
							| 17 | 16 | breq1i |  |-  ( ( Im ` ( ; 1 5 + ( _i x. 8 ) ) ) < 0 <-> 8 < 0 ) | 
						
							| 18 | 14 17 | sylnibr |  |-  ( 0 < 8 -> -. ( Im ` ( ; 1 5 + ( _i x. 8 ) ) ) < 0 ) | 
						
							| 19 | 11 18 | ax-mp |  |-  -. ( Im ` ( ; 1 5 + ( _i x. 8 ) ) ) < 0 | 
						
							| 20 | 19 | iffalsei |  |-  if ( ( Im ` ( ; 1 5 + ( _i x. 8 ) ) ) < 0 , -u 1 , 1 ) = 1 | 
						
							| 21 |  | absreim |  |-  ( ( ; 1 5 e. RR /\ 8 e. RR ) -> ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) = ( sqrt ` ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) ) ) | 
						
							| 22 | 15 13 21 | mp2an |  |-  ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) = ( sqrt ` ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) ) | 
						
							| 23 | 4 | sqvali |  |-  ( ; 1 5 ^ 2 ) = ( ; 1 5 x. ; 1 5 ) | 
						
							| 24 |  | eqid |  |-  ; 1 5 = ; 1 5 | 
						
							| 25 |  | 7nn0 |  |-  7 e. NN0 | 
						
							| 26 | 4 | mullidi |  |-  ( 1 x. ; 1 5 ) = ; 1 5 | 
						
							| 27 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 28 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 29 | 25 | nn0cni |  |-  7 e. CC | 
						
							| 30 | 2 | nn0cni |  |-  5 e. CC | 
						
							| 31 |  | 7p5e12 |  |-  ( 7 + 5 ) = ; 1 2 | 
						
							| 32 | 29 30 31 | addcomli |  |-  ( 5 + 7 ) = ; 1 2 | 
						
							| 33 | 1 2 25 26 27 28 32 | decaddci |  |-  ( ( 1 x. ; 1 5 ) + 7 ) = ; 2 2 | 
						
							| 34 | 30 | mulridi |  |-  ( 5 x. 1 ) = 5 | 
						
							| 35 | 34 | oveq1i |  |-  ( ( 5 x. 1 ) + 2 ) = ( 5 + 2 ) | 
						
							| 36 |  | 5p2e7 |  |-  ( 5 + 2 ) = 7 | 
						
							| 37 | 35 36 | eqtri |  |-  ( ( 5 x. 1 ) + 2 ) = 7 | 
						
							| 38 |  | 5t5e25 |  |-  ( 5 x. 5 ) = ; 2 5 | 
						
							| 39 | 2 1 2 24 2 28 37 38 | decmul2c |  |-  ( 5 x. ; 1 5 ) = ; 7 5 | 
						
							| 40 | 3 1 2 24 2 25 33 39 | decmul1c |  |-  ( ; 1 5 x. ; 1 5 ) = ; ; 2 2 5 | 
						
							| 41 | 23 40 | eqtri |  |-  ( ; 1 5 ^ 2 ) = ; ; 2 2 5 | 
						
							| 42 | 6 | sqvali |  |-  ( 8 ^ 2 ) = ( 8 x. 8 ) | 
						
							| 43 |  | 8t8e64 |  |-  ( 8 x. 8 ) = ; 6 4 | 
						
							| 44 | 42 43 | eqtri |  |-  ( 8 ^ 2 ) = ; 6 4 | 
						
							| 45 | 41 44 | oveq12i |  |-  ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) = ( ; ; 2 2 5 + ; 6 4 ) | 
						
							| 46 | 28 28 | deccl |  |-  ; 2 2 e. NN0 | 
						
							| 47 |  | 6nn0 |  |-  6 e. NN0 | 
						
							| 48 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 49 |  | eqid |  |-  ; ; 2 2 5 = ; ; 2 2 5 | 
						
							| 50 |  | eqid |  |-  ; 6 4 = ; 6 4 | 
						
							| 51 |  | eqid |  |-  ; 2 2 = ; 2 2 | 
						
							| 52 | 47 | nn0cni |  |-  6 e. CC | 
						
							| 53 | 28 | nn0cni |  |-  2 e. CC | 
						
							| 54 |  | 6p2e8 |  |-  ( 6 + 2 ) = 8 | 
						
							| 55 | 52 53 54 | addcomli |  |-  ( 2 + 6 ) = 8 | 
						
							| 56 | 28 28 47 51 55 | decaddi |  |-  ( ; 2 2 + 6 ) = ; 2 8 | 
						
							| 57 |  | 5p4e9 |  |-  ( 5 + 4 ) = 9 | 
						
							| 58 | 46 2 47 48 49 50 56 57 | decadd |  |-  ( ; ; 2 2 5 + ; 6 4 ) = ; ; 2 8 9 | 
						
							| 59 | 1 25 | deccl |  |-  ; 1 7 e. NN0 | 
						
							| 60 | 59 | nn0cni |  |-  ; 1 7 e. CC | 
						
							| 61 | 60 | sqvali |  |-  ( ; 1 7 ^ 2 ) = ( ; 1 7 x. ; 1 7 ) | 
						
							| 62 |  | eqid |  |-  ; 1 7 = ; 1 7 | 
						
							| 63 |  | 9nn0 |  |-  9 e. NN0 | 
						
							| 64 | 1 1 | deccl |  |-  ; 1 1 e. NN0 | 
						
							| 65 | 60 | mullidi |  |-  ( 1 x. ; 1 7 ) = ; 1 7 | 
						
							| 66 |  | eqid |  |-  ; 1 1 = ; 1 1 | 
						
							| 67 |  | 7p1e8 |  |-  ( 7 + 1 ) = 8 | 
						
							| 68 | 1 25 1 1 65 66 27 67 | decadd |  |-  ( ( 1 x. ; 1 7 ) + ; 1 1 ) = ; 2 8 | 
						
							| 69 | 29 | mulridi |  |-  ( 7 x. 1 ) = 7 | 
						
							| 70 | 69 | oveq1i |  |-  ( ( 7 x. 1 ) + 4 ) = ( 7 + 4 ) | 
						
							| 71 |  | 7p4e11 |  |-  ( 7 + 4 ) = ; 1 1 | 
						
							| 72 | 70 71 | eqtri |  |-  ( ( 7 x. 1 ) + 4 ) = ; 1 1 | 
						
							| 73 |  | 7t7e49 |  |-  ( 7 x. 7 ) = ; 4 9 | 
						
							| 74 | 25 1 25 62 63 48 72 73 | decmul2c |  |-  ( 7 x. ; 1 7 ) = ; ; 1 1 9 | 
						
							| 75 | 59 1 25 62 63 64 68 74 | decmul1c |  |-  ( ; 1 7 x. ; 1 7 ) = ; ; 2 8 9 | 
						
							| 76 | 61 75 | eqtr2i |  |-  ; ; 2 8 9 = ( ; 1 7 ^ 2 ) | 
						
							| 77 | 45 58 76 | 3eqtri |  |-  ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) = ( ; 1 7 ^ 2 ) | 
						
							| 78 | 77 | fveq2i |  |-  ( sqrt ` ( ( ; 1 5 ^ 2 ) + ( 8 ^ 2 ) ) ) = ( sqrt ` ( ; 1 7 ^ 2 ) ) | 
						
							| 79 | 59 | nn0ge0i |  |-  0 <_ ; 1 7 | 
						
							| 80 | 59 | nn0rei |  |-  ; 1 7 e. RR | 
						
							| 81 | 80 | sqrtsqi |  |-  ( 0 <_ ; 1 7 -> ( sqrt ` ( ; 1 7 ^ 2 ) ) = ; 1 7 ) | 
						
							| 82 | 79 81 | ax-mp |  |-  ( sqrt ` ( ; 1 7 ^ 2 ) ) = ; 1 7 | 
						
							| 83 | 22 78 82 | 3eqtri |  |-  ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) = ; 1 7 | 
						
							| 84 | 15 13 | crrei |  |-  ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) = ; 1 5 | 
						
							| 85 | 83 84 | oveq12i |  |-  ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) - ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) = ( ; 1 7 - ; 1 5 ) | 
						
							| 86 | 1 2 28 24 36 | decaddi |  |-  ( ; 1 5 + 2 ) = ; 1 7 | 
						
							| 87 | 60 4 53 86 | subaddrii |  |-  ( ; 1 7 - ; 1 5 ) = 2 | 
						
							| 88 | 85 87 | eqtri |  |-  ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) - ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) = 2 | 
						
							| 89 | 88 | oveq1i |  |-  ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) - ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) = ( 2 / 2 ) | 
						
							| 90 |  | 2div2e1 |  |-  ( 2 / 2 ) = 1 | 
						
							| 91 | 89 90 | eqtri |  |-  ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) - ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) = 1 | 
						
							| 92 | 91 | fveq2i |  |-  ( sqrt ` ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) - ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) ) = ( sqrt ` 1 ) | 
						
							| 93 |  | sqrt1 |  |-  ( sqrt ` 1 ) = 1 | 
						
							| 94 | 92 93 | eqtri |  |-  ( sqrt ` ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) - ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) ) = 1 | 
						
							| 95 | 20 94 | oveq12i |  |-  ( if ( ( Im ` ( ; 1 5 + ( _i x. 8 ) ) ) < 0 , -u 1 , 1 ) x. ( sqrt ` ( ( ( abs ` ( ; 1 5 + ( _i x. 8 ) ) ) - ( Re ` ( ; 1 5 + ( _i x. 8 ) ) ) ) / 2 ) ) ) = ( 1 x. 1 ) | 
						
							| 96 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 97 | 10 95 96 | 3eqtri |  |-  ( Im ` ( sqrt ` ( ; 1 5 + ( _i x. 8 ) ) ) ) = 1 |