Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infeq3 | |- ( R = S -> inf ( A , B , R ) = inf ( A , B , S ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnveq | |- ( R = S -> `' R = `' S ) | |
| 2 | supeq3 | |- ( `' R = `' S -> sup ( A , B , `' R ) = sup ( A , B , `' S ) ) | |
| 3 | 1 2 | syl | |- ( R = S -> sup ( A , B , `' R ) = sup ( A , B , `' S ) ) | 
| 4 | df-inf | |- inf ( A , B , R ) = sup ( A , B , `' R ) | |
| 5 | df-inf | |- inf ( A , B , S ) = sup ( A , B , `' S ) | |
| 6 | 3 4 5 | 3eqtr4g | |- ( R = S -> inf ( A , B , R ) = inf ( A , B , S ) ) |