Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | infeq3 | |- ( R = S -> inf ( A , B , R ) = inf ( A , B , S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq | |- ( R = S -> `' R = `' S ) |
|
2 | supeq3 | |- ( `' R = `' S -> sup ( A , B , `' R ) = sup ( A , B , `' S ) ) |
|
3 | 1 2 | syl | |- ( R = S -> sup ( A , B , `' R ) = sup ( A , B , `' S ) ) |
4 | df-inf | |- inf ( A , B , R ) = sup ( A , B , `' R ) |
|
5 | df-inf | |- inf ( A , B , S ) = sup ( A , B , `' S ) |
|
6 | 3 4 5 | 3eqtr4g | |- ( R = S -> inf ( A , B , R ) = inf ( A , B , S ) ) |