Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Supremum and infimum
infeq3
Next ⟩
infeq123d
Metamath Proof Explorer
Ascii
Unicode
Theorem
infeq3
Description:
Equality theorem for infimum.
(Contributed by
AV
, 2-Sep-2020)
Ref
Expression
Assertion
infeq3
⊢
R
=
S
→
sup
A
B
R
=
sup
A
B
S
Proof
Step
Hyp
Ref
Expression
1
cnveq
⊢
R
=
S
→
R
-1
=
S
-1
2
supeq3
⊢
R
-1
=
S
-1
→
sup
A
B
R
-1
=
sup
A
B
S
-1
3
1
2
syl
⊢
R
=
S
→
sup
A
B
R
-1
=
sup
A
B
S
-1
4
df-inf
⊢
sup
A
B
R
=
sup
A
B
R
-1
5
df-inf
⊢
sup
A
B
S
=
sup
A
B
S
-1
6
3
4
5
3eqtr4g
⊢
R
=
S
→
sup
A
B
R
=
sup
A
B
S