Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | infeq3 | ⊢ ( 𝑅 = 𝑆 → inf ( 𝐴 , 𝐵 , 𝑅 ) = inf ( 𝐴 , 𝐵 , 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq | ⊢ ( 𝑅 = 𝑆 → ◡ 𝑅 = ◡ 𝑆 ) | |
2 | supeq3 | ⊢ ( ◡ 𝑅 = ◡ 𝑆 → sup ( 𝐴 , 𝐵 , ◡ 𝑅 ) = sup ( 𝐴 , 𝐵 , ◡ 𝑆 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝑅 = 𝑆 → sup ( 𝐴 , 𝐵 , ◡ 𝑅 ) = sup ( 𝐴 , 𝐵 , ◡ 𝑆 ) ) |
4 | df-inf | ⊢ inf ( 𝐴 , 𝐵 , 𝑅 ) = sup ( 𝐴 , 𝐵 , ◡ 𝑅 ) | |
5 | df-inf | ⊢ inf ( 𝐴 , 𝐵 , 𝑆 ) = sup ( 𝐴 , 𝐵 , ◡ 𝑆 ) | |
6 | 3 4 5 | 3eqtr4g | ⊢ ( 𝑅 = 𝑆 → inf ( 𝐴 , 𝐵 , 𝑅 ) = inf ( 𝐴 , 𝐵 , 𝑆 ) ) |