Step |
Hyp |
Ref |
Expression |
1 |
|
breq |
⊢ ( 𝑅 = 𝑆 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑆 𝑦 ) ) |
2 |
1
|
notbid |
⊢ ( 𝑅 = 𝑆 → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑥 𝑆 𝑦 ) ) |
3 |
2
|
ralbidv |
⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑆 𝑦 ) ) |
4 |
|
breq |
⊢ ( 𝑅 = 𝑆 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑆 𝑥 ) ) |
5 |
|
breq |
⊢ ( 𝑅 = 𝑆 → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑆 𝑧 ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑅 = 𝑆 → ( ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝑦 𝑆 𝑧 ) ) |
7 |
4 6
|
imbi12d |
⊢ ( 𝑅 = 𝑆 → ( ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ↔ ( 𝑦 𝑆 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑆 𝑧 ) ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑅 = 𝑆 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑆 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑆 𝑧 ) ) ) |
9 |
3 8
|
anbi12d |
⊢ ( 𝑅 = 𝑆 → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑆 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑆 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑆 𝑧 ) ) ) ) |
10 |
9
|
rabbidv |
⊢ ( 𝑅 = 𝑆 → { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } = { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑆 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑆 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑆 𝑧 ) ) } ) |
11 |
10
|
unieqd |
⊢ ( 𝑅 = 𝑆 → ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } = ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑆 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑆 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑆 𝑧 ) ) } ) |
12 |
|
df-sup |
⊢ sup ( 𝐴 , 𝐵 , 𝑅 ) = ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑅 𝑧 ) ) } |
13 |
|
df-sup |
⊢ sup ( 𝐴 , 𝐵 , 𝑆 ) = ∪ { 𝑥 ∈ 𝐵 ∣ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑆 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝑆 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 𝑆 𝑧 ) ) } |
14 |
11 12 13
|
3eqtr4g |
⊢ ( 𝑅 = 𝑆 → sup ( 𝐴 , 𝐵 , 𝑅 ) = sup ( 𝐴 , 𝐵 , 𝑆 ) ) |