Description: Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | supeq3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq | |
|
2 | 1 | notbid | |
3 | 2 | ralbidv | |
4 | breq | |
|
5 | breq | |
|
6 | 5 | rexbidv | |
7 | 4 6 | imbi12d | |
8 | 7 | ralbidv | |
9 | 3 8 | anbi12d | |
10 | 9 | rabbidv | |
11 | 10 | unieqd | |
12 | df-sup | |
|
13 | df-sup | |
|
14 | 11 12 13 | 3eqtr4g | |