Metamath Proof Explorer


Theorem supeq3

Description: Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Assertion supeq3 R=SsupABR=supABS

Proof

Step Hyp Ref Expression
1 breq R=SxRyxSy
2 1 notbid R=S¬xRy¬xSy
3 2 ralbidv R=SyA¬xRyyA¬xSy
4 breq R=SyRxySx
5 breq R=SyRzySz
6 5 rexbidv R=SzAyRzzAySz
7 4 6 imbi12d R=SyRxzAyRzySxzAySz
8 7 ralbidv R=SyByRxzAyRzyBySxzAySz
9 3 8 anbi12d R=SyA¬xRyyByRxzAyRzyA¬xSyyBySxzAySz
10 9 rabbidv R=SxB|yA¬xRyyByRxzAyRz=xB|yA¬xSyyBySxzAySz
11 10 unieqd R=SxB|yA¬xRyyByRxzAyRz=xB|yA¬xSyyBySxzAySz
12 df-sup supABR=xB|yA¬xRyyByRxzAyRz
13 df-sup supABS=xB|yA¬xSyyBySxzAySz
14 11 12 13 3eqtr4g R=SsupABR=supABS