Step |
Hyp |
Ref |
Expression |
1 |
|
infxrge0glb.a |
|- ( ph -> A C_ ( 0 [,] +oo ) ) |
2 |
|
infxrge0glb.b |
|- ( ph -> B e. ( 0 [,] +oo ) ) |
3 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
4 |
|
xrltso |
|- < Or RR* |
5 |
|
soss |
|- ( ( 0 [,] +oo ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] +oo ) ) ) |
6 |
3 4 5
|
mp2 |
|- < Or ( 0 [,] +oo ) |
7 |
6
|
a1i |
|- ( ph -> < Or ( 0 [,] +oo ) ) |
8 |
|
xrge0infss |
|- ( A C_ ( 0 [,] +oo ) -> E. x e. ( 0 [,] +oo ) ( A. y e. A -. y < x /\ A. y e. ( 0 [,] +oo ) ( x < y -> E. z e. A z < y ) ) ) |
9 |
1 8
|
syl |
|- ( ph -> E. x e. ( 0 [,] +oo ) ( A. y e. A -. y < x /\ A. y e. ( 0 [,] +oo ) ( x < y -> E. z e. A z < y ) ) ) |
10 |
7 9 1
|
infglbb |
|- ( ( ph /\ B e. ( 0 [,] +oo ) ) -> ( inf ( A , ( 0 [,] +oo ) , < ) < B <-> E. z e. A z < B ) ) |
11 |
2 10
|
mpdan |
|- ( ph -> ( inf ( A , ( 0 [,] +oo ) , < ) < B <-> E. z e. A z < B ) ) |
12 |
|
breq1 |
|- ( x = z -> ( x < B <-> z < B ) ) |
13 |
12
|
cbvrexvw |
|- ( E. x e. A x < B <-> E. z e. A z < B ) |
14 |
11 13
|
bitr4di |
|- ( ph -> ( inf ( A , ( 0 [,] +oo ) , < ) < B <-> E. x e. A x < B ) ) |