Step |
Hyp |
Ref |
Expression |
1 |
|
infxrge0glb.a |
|- ( ph -> A C_ ( 0 [,] +oo ) ) |
2 |
|
infxrge0glb.b |
|- ( ph -> B e. ( 0 [,] +oo ) ) |
3 |
1 2
|
infxrge0glb |
|- ( ph -> ( inf ( A , ( 0 [,] +oo ) , < ) < B <-> E. x e. A x < B ) ) |
4 |
3
|
notbid |
|- ( ph -> ( -. inf ( A , ( 0 [,] +oo ) , < ) < B <-> -. E. x e. A x < B ) ) |
5 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
6 |
5 2
|
sselid |
|- ( ph -> B e. RR* ) |
7 |
|
xrltso |
|- < Or RR* |
8 |
|
soss |
|- ( ( 0 [,] +oo ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] +oo ) ) ) |
9 |
5 7 8
|
mp2 |
|- < Or ( 0 [,] +oo ) |
10 |
9
|
a1i |
|- ( ph -> < Or ( 0 [,] +oo ) ) |
11 |
|
xrge0infss |
|- ( A C_ ( 0 [,] +oo ) -> E. x e. ( 0 [,] +oo ) ( A. y e. A -. y < x /\ A. y e. ( 0 [,] +oo ) ( x < y -> E. z e. A z < y ) ) ) |
12 |
1 11
|
syl |
|- ( ph -> E. x e. ( 0 [,] +oo ) ( A. y e. A -. y < x /\ A. y e. ( 0 [,] +oo ) ( x < y -> E. z e. A z < y ) ) ) |
13 |
10 12
|
infcl |
|- ( ph -> inf ( A , ( 0 [,] +oo ) , < ) e. ( 0 [,] +oo ) ) |
14 |
5 13
|
sselid |
|- ( ph -> inf ( A , ( 0 [,] +oo ) , < ) e. RR* ) |
15 |
6 14
|
xrlenltd |
|- ( ph -> ( B <_ inf ( A , ( 0 [,] +oo ) , < ) <-> -. inf ( A , ( 0 [,] +oo ) , < ) < B ) ) |
16 |
6
|
adantr |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
17 |
1 5
|
sstrdi |
|- ( ph -> A C_ RR* ) |
18 |
17
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR* ) |
19 |
16 18
|
xrlenltd |
|- ( ( ph /\ x e. A ) -> ( B <_ x <-> -. x < B ) ) |
20 |
19
|
ralbidva |
|- ( ph -> ( A. x e. A B <_ x <-> A. x e. A -. x < B ) ) |
21 |
|
ralnex |
|- ( A. x e. A -. x < B <-> -. E. x e. A x < B ) |
22 |
20 21
|
bitrdi |
|- ( ph -> ( A. x e. A B <_ x <-> -. E. x e. A x < B ) ) |
23 |
4 15 22
|
3bitr4d |
|- ( ph -> ( B <_ inf ( A , ( 0 [,] +oo ) , < ) <-> A. x e. A B <_ x ) ) |