Metamath Proof Explorer


Theorem infxrge0gelb

Description: The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020) (Revised by AV, 4-Oct-2020)

Ref Expression
Hypotheses infxrge0glb.a ( 𝜑𝐴 ⊆ ( 0 [,] +∞ ) )
infxrge0glb.b ( 𝜑𝐵 ∈ ( 0 [,] +∞ ) )
Assertion infxrge0gelb ( 𝜑 → ( 𝐵 ≤ inf ( 𝐴 , ( 0 [,] +∞ ) , < ) ↔ ∀ 𝑥𝐴 𝐵𝑥 ) )

Proof

Step Hyp Ref Expression
1 infxrge0glb.a ( 𝜑𝐴 ⊆ ( 0 [,] +∞ ) )
2 infxrge0glb.b ( 𝜑𝐵 ∈ ( 0 [,] +∞ ) )
3 1 2 infxrge0glb ( 𝜑 → ( inf ( 𝐴 , ( 0 [,] +∞ ) , < ) < 𝐵 ↔ ∃ 𝑥𝐴 𝑥 < 𝐵 ) )
4 3 notbid ( 𝜑 → ( ¬ inf ( 𝐴 , ( 0 [,] +∞ ) , < ) < 𝐵 ↔ ¬ ∃ 𝑥𝐴 𝑥 < 𝐵 ) )
5 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
6 5 2 sseldi ( 𝜑𝐵 ∈ ℝ* )
7 xrltso < Or ℝ*
8 soss ( ( 0 [,] +∞ ) ⊆ ℝ* → ( < Or ℝ* → < Or ( 0 [,] +∞ ) ) )
9 5 7 8 mp2 < Or ( 0 [,] +∞ )
10 9 a1i ( 𝜑 → < Or ( 0 [,] +∞ ) )
11 xrge0infss ( 𝐴 ⊆ ( 0 [,] +∞ ) → ∃ 𝑥 ∈ ( 0 [,] +∞ ) ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
12 1 11 syl ( 𝜑 → ∃ 𝑥 ∈ ( 0 [,] +∞ ) ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
13 10 12 infcl ( 𝜑 → inf ( 𝐴 , ( 0 [,] +∞ ) , < ) ∈ ( 0 [,] +∞ ) )
14 5 13 sseldi ( 𝜑 → inf ( 𝐴 , ( 0 [,] +∞ ) , < ) ∈ ℝ* )
15 6 14 xrlenltd ( 𝜑 → ( 𝐵 ≤ inf ( 𝐴 , ( 0 [,] +∞ ) , < ) ↔ ¬ inf ( 𝐴 , ( 0 [,] +∞ ) , < ) < 𝐵 ) )
16 6 adantr ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
17 1 5 sstrdi ( 𝜑𝐴 ⊆ ℝ* )
18 17 sselda ( ( 𝜑𝑥𝐴 ) → 𝑥 ∈ ℝ* )
19 16 18 xrlenltd ( ( 𝜑𝑥𝐴 ) → ( 𝐵𝑥 ↔ ¬ 𝑥 < 𝐵 ) )
20 19 ralbidva ( 𝜑 → ( ∀ 𝑥𝐴 𝐵𝑥 ↔ ∀ 𝑥𝐴 ¬ 𝑥 < 𝐵 ) )
21 ralnex ( ∀ 𝑥𝐴 ¬ 𝑥 < 𝐵 ↔ ¬ ∃ 𝑥𝐴 𝑥 < 𝐵 )
22 20 21 bitrdi ( 𝜑 → ( ∀ 𝑥𝐴 𝐵𝑥 ↔ ¬ ∃ 𝑥𝐴 𝑥 < 𝐵 ) )
23 4 15 22 3bitr4d ( 𝜑 → ( 𝐵 ≤ inf ( 𝐴 , ( 0 [,] +∞ ) , < ) ↔ ∀ 𝑥𝐴 𝐵𝑥 ) )