Step |
Hyp |
Ref |
Expression |
1 |
|
infxrge0glb.a |
⊢ ( 𝜑 → 𝐴 ⊆ ( 0 [,] +∞ ) ) |
2 |
|
infxrge0glb.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] +∞ ) ) |
3 |
1 2
|
infxrge0glb |
⊢ ( 𝜑 → ( inf ( 𝐴 , ( 0 [,] +∞ ) , < ) < 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 < 𝐵 ) ) |
4 |
3
|
notbid |
⊢ ( 𝜑 → ( ¬ inf ( 𝐴 , ( 0 [,] +∞ ) , < ) < 𝐵 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝑥 < 𝐵 ) ) |
5 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
6 |
5 2
|
sselid |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
7 |
|
xrltso |
⊢ < Or ℝ* |
8 |
|
soss |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* → ( < Or ℝ* → < Or ( 0 [,] +∞ ) ) ) |
9 |
5 7 8
|
mp2 |
⊢ < Or ( 0 [,] +∞ ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → < Or ( 0 [,] +∞ ) ) |
11 |
|
xrge0infss |
⊢ ( 𝐴 ⊆ ( 0 [,] +∞ ) → ∃ 𝑥 ∈ ( 0 [,] +∞ ) ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 0 [,] +∞ ) ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
13 |
10 12
|
infcl |
⊢ ( 𝜑 → inf ( 𝐴 , ( 0 [,] +∞ ) , < ) ∈ ( 0 [,] +∞ ) ) |
14 |
5 13
|
sselid |
⊢ ( 𝜑 → inf ( 𝐴 , ( 0 [,] +∞ ) , < ) ∈ ℝ* ) |
15 |
6 14
|
xrlenltd |
⊢ ( 𝜑 → ( 𝐵 ≤ inf ( 𝐴 , ( 0 [,] +∞ ) , < ) ↔ ¬ inf ( 𝐴 , ( 0 [,] +∞ ) , < ) < 𝐵 ) ) |
16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
17 |
1 5
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
18 |
17
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ* ) |
19 |
16 18
|
xrlenltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐵 ) ) |
20 |
19
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ) ) |
21 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝑥 < 𝐵 ) |
22 |
20 21
|
bitrdi |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝑥 < 𝐵 ) ) |
23 |
4 15 22
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐵 ≤ inf ( 𝐴 , ( 0 [,] +∞ ) , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ) ) |