Metamath Proof Explorer


Theorem xrge0infss

Description: Any subset of nonnegative extended reals has an infimum. (Contributed by Thierry Arnoux, 16-Sep-2019) (Revised by AV, 4-Oct-2020)

Ref Expression
Assertion xrge0infss ( 𝐴 ⊆ ( 0 [,] +∞ ) → ∃ 𝑥 ∈ ( 0 [,] +∞ ) ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 ssel2 ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑦𝐴 ) → 𝑦 ∈ ( 0 [,] +∞ ) )
2 0xr 0 ∈ ℝ*
3 pnfxr +∞ ∈ ℝ*
4 iccgelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝑦 )
5 2 3 4 mp3an12 ( 𝑦 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝑦 )
6 eliccxr ( 𝑦 ∈ ( 0 [,] +∞ ) → 𝑦 ∈ ℝ* )
7 xrlenlt ( ( 0 ∈ ℝ*𝑦 ∈ ℝ* ) → ( 0 ≤ 𝑦 ↔ ¬ 𝑦 < 0 ) )
8 2 6 7 sylancr ( 𝑦 ∈ ( 0 [,] +∞ ) → ( 0 ≤ 𝑦 ↔ ¬ 𝑦 < 0 ) )
9 5 8 mpbid ( 𝑦 ∈ ( 0 [,] +∞ ) → ¬ 𝑦 < 0 )
10 1 9 syl ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑦𝐴 ) → ¬ 𝑦 < 0 )
11 10 ralrimiva ( 𝐴 ⊆ ( 0 [,] +∞ ) → ∀ 𝑦𝐴 ¬ 𝑦 < 0 )
12 11 ad3antrrr ( ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) ∧ 𝑤 ≤ 0 ) → ∀ 𝑦𝐴 ¬ 𝑦 < 0 )
13 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
14 ssralv ( ( 0 [,] +∞ ) ⊆ ℝ* → ( ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) → ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
15 13 14 ax-mp ( ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) → ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) )
16 simplll ( ( ( ( 𝑤 ∈ ℝ*𝑤 ≤ 0 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝑦 ) → 𝑤 ∈ ℝ* )
17 2 a1i ( ( ( ( 𝑤 ∈ ℝ*𝑤 ≤ 0 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝑦 ) → 0 ∈ ℝ* )
18 simplr ( ( ( ( 𝑤 ∈ ℝ*𝑤 ≤ 0 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝑦 ) → 𝑦 ∈ ( 0 [,] +∞ ) )
19 13 18 sseldi ( ( ( ( 𝑤 ∈ ℝ*𝑤 ≤ 0 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝑦 ) → 𝑦 ∈ ℝ* )
20 simpllr ( ( ( ( 𝑤 ∈ ℝ*𝑤 ≤ 0 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝑦 ) → 𝑤 ≤ 0 )
21 simpr ( ( ( ( 𝑤 ∈ ℝ*𝑤 ≤ 0 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝑦 ) → 0 < 𝑦 )
22 16 17 19 20 21 xrlelttrd ( ( ( ( 𝑤 ∈ ℝ*𝑤 ≤ 0 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) ∧ 0 < 𝑦 ) → 𝑤 < 𝑦 )
23 22 ex ( ( ( 𝑤 ∈ ℝ*𝑤 ≤ 0 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( 0 < 𝑦𝑤 < 𝑦 ) )
24 23 imim1d ( ( ( 𝑤 ∈ ℝ*𝑤 ≤ 0 ) ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) → ( 0 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
25 24 ralimdva ( ( 𝑤 ∈ ℝ*𝑤 ≤ 0 ) → ( ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) → ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 0 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
26 15 25 syl5 ( ( 𝑤 ∈ ℝ*𝑤 ≤ 0 ) → ( ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) → ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 0 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
27 26 adantll ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ 𝑤 ≤ 0 ) → ( ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) → ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 0 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
28 27 imp ( ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ 𝑤 ≤ 0 ) ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) → ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 0 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) )
29 28 adantrl ( ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ 𝑤 ≤ 0 ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) → ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 0 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) )
30 29 an32s ( ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) ∧ 𝑤 ≤ 0 ) → ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 0 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) )
31 0e0iccpnf 0 ∈ ( 0 [,] +∞ )
32 breq2 ( 𝑥 = 0 → ( 𝑦 < 𝑥𝑦 < 0 ) )
33 32 notbid ( 𝑥 = 0 → ( ¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 0 ) )
34 33 ralbidv ( 𝑥 = 0 → ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀ 𝑦𝐴 ¬ 𝑦 < 0 ) )
35 breq1 ( 𝑥 = 0 → ( 𝑥 < 𝑦 ↔ 0 < 𝑦 ) )
36 35 imbi1d ( 𝑥 = 0 → ( ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ↔ ( 0 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
37 36 ralbidv ( 𝑥 = 0 → ( ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ↔ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 0 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
38 34 37 anbi12d ( 𝑥 = 0 → ( ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ↔ ( ∀ 𝑦𝐴 ¬ 𝑦 < 0 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 0 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) )
39 38 rspcev ( ( 0 ∈ ( 0 [,] +∞ ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 0 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 0 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) → ∃ 𝑥 ∈ ( 0 [,] +∞ ) ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
40 31 39 mpan ( ( ∀ 𝑦𝐴 ¬ 𝑦 < 0 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 0 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) → ∃ 𝑥 ∈ ( 0 [,] +∞ ) ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
41 12 30 40 syl2anc ( ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) ∧ 𝑤 ≤ 0 ) → ∃ 𝑥 ∈ ( 0 [,] +∞ ) ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
42 simpllr ( ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) ∧ 0 ≤ 𝑤 ) → 𝑤 ∈ ℝ* )
43 simpr ( ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) ∧ 0 ≤ 𝑤 ) → 0 ≤ 𝑤 )
44 elxrge0 ( 𝑤 ∈ ( 0 [,] +∞ ) ↔ ( 𝑤 ∈ ℝ* ∧ 0 ≤ 𝑤 ) )
45 42 43 44 sylanbrc ( ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) ∧ 0 ≤ 𝑤 ) → 𝑤 ∈ ( 0 [,] +∞ ) )
46 15 a1i ( 𝐴 ⊆ ( 0 [,] +∞ ) → ( ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) → ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
47 46 anim2d ( 𝐴 ⊆ ( 0 [,] +∞ ) → ( ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) → ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) )
48 47 adantr ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) → ( ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) → ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) )
49 48 imp ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) → ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
50 49 adantr ( ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) ∧ 0 ≤ 𝑤 ) → ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
51 breq2 ( 𝑥 = 𝑤 → ( 𝑦 < 𝑥𝑦 < 𝑤 ) )
52 51 notbid ( 𝑥 = 𝑤 → ( ¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 𝑤 ) )
53 52 ralbidv ( 𝑥 = 𝑤 → ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ) )
54 breq1 ( 𝑥 = 𝑤 → ( 𝑥 < 𝑦𝑤 < 𝑦 ) )
55 54 imbi1d ( 𝑥 = 𝑤 → ( ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ↔ ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
56 55 ralbidv ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ↔ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
57 53 56 anbi12d ( 𝑥 = 𝑤 → ( ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ↔ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) )
58 57 rspcev ( ( 𝑤 ∈ ( 0 [,] +∞ ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) → ∃ 𝑥 ∈ ( 0 [,] +∞ ) ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
59 45 50 58 syl2anc ( ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) ∧ 0 ≤ 𝑤 ) → ∃ 𝑥 ∈ ( 0 [,] +∞ ) ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
60 simplr ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) → 𝑤 ∈ ℝ* )
61 2 a1i ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) → 0 ∈ ℝ* )
62 xrletri ( ( 𝑤 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 𝑤 ≤ 0 ∨ 0 ≤ 𝑤 ) )
63 60 61 62 syl2anc ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) → ( 𝑤 ≤ 0 ∨ 0 ≤ 𝑤 ) )
64 41 59 63 mpjaodan ( ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ 𝑤 ∈ ℝ* ) ∧ ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) ) → ∃ 𝑥 ∈ ( 0 [,] +∞ ) ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
65 sstr ( ( 𝐴 ⊆ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → 𝐴 ⊆ ℝ* )
66 13 65 mpan2 ( 𝐴 ⊆ ( 0 [,] +∞ ) → 𝐴 ⊆ ℝ* )
67 xrinfmss ( 𝐴 ⊆ ℝ* → ∃ 𝑤 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
68 66 67 syl ( 𝐴 ⊆ ( 0 [,] +∞ ) → ∃ 𝑤 ∈ ℝ* ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀ 𝑦 ∈ ℝ* ( 𝑤 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )
69 64 68 r19.29a ( 𝐴 ⊆ ( 0 [,] +∞ ) → ∃ 𝑥 ∈ ( 0 [,] +∞ ) ( ∀ 𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ( 0 [,] +∞ ) ( 𝑥 < 𝑦 → ∃ 𝑧𝐴 𝑧 < 𝑦 ) ) )