| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrofsup.1 |
|- ( ph -> X C_ RR* ) |
| 2 |
|
xrofsup.2 |
|- ( ph -> Y C_ RR* ) |
| 3 |
|
xrofsup.3 |
|- ( ph -> sup ( X , RR* , < ) =/= -oo ) |
| 4 |
|
xrofsup.4 |
|- ( ph -> sup ( Y , RR* , < ) =/= -oo ) |
| 5 |
|
xrofsup.5 |
|- ( ph -> Z = ( +e " ( X X. Y ) ) ) |
| 6 |
1
|
sseld |
|- ( ph -> ( x e. X -> x e. RR* ) ) |
| 7 |
2
|
sseld |
|- ( ph -> ( y e. Y -> y e. RR* ) ) |
| 8 |
6 7
|
anim12d |
|- ( ph -> ( ( x e. X /\ y e. Y ) -> ( x e. RR* /\ y e. RR* ) ) ) |
| 9 |
8
|
imp |
|- ( ( ph /\ ( x e. X /\ y e. Y ) ) -> ( x e. RR* /\ y e. RR* ) ) |
| 10 |
|
xaddcl |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x +e y ) e. RR* ) |
| 11 |
9 10
|
syl |
|- ( ( ph /\ ( x e. X /\ y e. Y ) ) -> ( x +e y ) e. RR* ) |
| 12 |
11
|
ralrimivva |
|- ( ph -> A. x e. X A. y e. Y ( x +e y ) e. RR* ) |
| 13 |
|
fveq2 |
|- ( u = <. x , y >. -> ( +e ` u ) = ( +e ` <. x , y >. ) ) |
| 14 |
|
df-ov |
|- ( x +e y ) = ( +e ` <. x , y >. ) |
| 15 |
13 14
|
eqtr4di |
|- ( u = <. x , y >. -> ( +e ` u ) = ( x +e y ) ) |
| 16 |
15
|
eleq1d |
|- ( u = <. x , y >. -> ( ( +e ` u ) e. RR* <-> ( x +e y ) e. RR* ) ) |
| 17 |
16
|
ralxp |
|- ( A. u e. ( X X. Y ) ( +e ` u ) e. RR* <-> A. x e. X A. y e. Y ( x +e y ) e. RR* ) |
| 18 |
12 17
|
sylibr |
|- ( ph -> A. u e. ( X X. Y ) ( +e ` u ) e. RR* ) |
| 19 |
|
xaddf |
|- +e : ( RR* X. RR* ) --> RR* |
| 20 |
|
ffun |
|- ( +e : ( RR* X. RR* ) --> RR* -> Fun +e ) |
| 21 |
19 20
|
ax-mp |
|- Fun +e |
| 22 |
|
xpss12 |
|- ( ( X C_ RR* /\ Y C_ RR* ) -> ( X X. Y ) C_ ( RR* X. RR* ) ) |
| 23 |
1 2 22
|
syl2anc |
|- ( ph -> ( X X. Y ) C_ ( RR* X. RR* ) ) |
| 24 |
19
|
fdmi |
|- dom +e = ( RR* X. RR* ) |
| 25 |
23 24
|
sseqtrrdi |
|- ( ph -> ( X X. Y ) C_ dom +e ) |
| 26 |
|
funimass4 |
|- ( ( Fun +e /\ ( X X. Y ) C_ dom +e ) -> ( ( +e " ( X X. Y ) ) C_ RR* <-> A. u e. ( X X. Y ) ( +e ` u ) e. RR* ) ) |
| 27 |
21 25 26
|
sylancr |
|- ( ph -> ( ( +e " ( X X. Y ) ) C_ RR* <-> A. u e. ( X X. Y ) ( +e ` u ) e. RR* ) ) |
| 28 |
18 27
|
mpbird |
|- ( ph -> ( +e " ( X X. Y ) ) C_ RR* ) |
| 29 |
5 28
|
eqsstrd |
|- ( ph -> Z C_ RR* ) |
| 30 |
|
supxrcl |
|- ( X C_ RR* -> sup ( X , RR* , < ) e. RR* ) |
| 31 |
1 30
|
syl |
|- ( ph -> sup ( X , RR* , < ) e. RR* ) |
| 32 |
|
supxrcl |
|- ( Y C_ RR* -> sup ( Y , RR* , < ) e. RR* ) |
| 33 |
2 32
|
syl |
|- ( ph -> sup ( Y , RR* , < ) e. RR* ) |
| 34 |
31 33
|
xaddcld |
|- ( ph -> ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) e. RR* ) |
| 35 |
5
|
eleq2d |
|- ( ph -> ( z e. Z <-> z e. ( +e " ( X X. Y ) ) ) ) |
| 36 |
35
|
pm5.32i |
|- ( ( ph /\ z e. Z ) <-> ( ph /\ z e. ( +e " ( X X. Y ) ) ) ) |
| 37 |
|
nfvd |
|- ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) -> F/ x z <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) |
| 38 |
|
nfvd |
|- ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) -> F/ y z <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) |
| 39 |
1
|
ad2antrr |
|- ( ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) /\ ( x e. X /\ y e. Y ) ) -> X C_ RR* ) |
| 40 |
|
simprl |
|- ( ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) /\ ( x e. X /\ y e. Y ) ) -> x e. X ) |
| 41 |
|
supxrub |
|- ( ( X C_ RR* /\ x e. X ) -> x <_ sup ( X , RR* , < ) ) |
| 42 |
39 40 41
|
syl2anc |
|- ( ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) /\ ( x e. X /\ y e. Y ) ) -> x <_ sup ( X , RR* , < ) ) |
| 43 |
2
|
ad2antrr |
|- ( ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) /\ ( x e. X /\ y e. Y ) ) -> Y C_ RR* ) |
| 44 |
|
simprr |
|- ( ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) /\ ( x e. X /\ y e. Y ) ) -> y e. Y ) |
| 45 |
|
supxrub |
|- ( ( Y C_ RR* /\ y e. Y ) -> y <_ sup ( Y , RR* , < ) ) |
| 46 |
43 44 45
|
syl2anc |
|- ( ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) /\ ( x e. X /\ y e. Y ) ) -> y <_ sup ( Y , RR* , < ) ) |
| 47 |
39 40
|
sseldd |
|- ( ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) /\ ( x e. X /\ y e. Y ) ) -> x e. RR* ) |
| 48 |
43 44
|
sseldd |
|- ( ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) /\ ( x e. X /\ y e. Y ) ) -> y e. RR* ) |
| 49 |
39 30
|
syl |
|- ( ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) /\ ( x e. X /\ y e. Y ) ) -> sup ( X , RR* , < ) e. RR* ) |
| 50 |
43 32
|
syl |
|- ( ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) /\ ( x e. X /\ y e. Y ) ) -> sup ( Y , RR* , < ) e. RR* ) |
| 51 |
|
xle2add |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ ( sup ( X , RR* , < ) e. RR* /\ sup ( Y , RR* , < ) e. RR* ) ) -> ( ( x <_ sup ( X , RR* , < ) /\ y <_ sup ( Y , RR* , < ) ) -> ( x +e y ) <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) ) |
| 52 |
47 48 49 50 51
|
syl22anc |
|- ( ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) /\ ( x e. X /\ y e. Y ) ) -> ( ( x <_ sup ( X , RR* , < ) /\ y <_ sup ( Y , RR* , < ) ) -> ( x +e y ) <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) ) |
| 53 |
42 46 52
|
mp2and |
|- ( ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) /\ ( x e. X /\ y e. Y ) ) -> ( x +e y ) <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) |
| 54 |
53
|
ralrimivva |
|- ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) -> A. x e. X A. y e. Y ( x +e y ) <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) |
| 55 |
|
fvelima |
|- ( ( Fun +e /\ z e. ( +e " ( X X. Y ) ) ) -> E. u e. ( X X. Y ) ( +e ` u ) = z ) |
| 56 |
21 55
|
mpan |
|- ( z e. ( +e " ( X X. Y ) ) -> E. u e. ( X X. Y ) ( +e ` u ) = z ) |
| 57 |
56
|
adantl |
|- ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) -> E. u e. ( X X. Y ) ( +e ` u ) = z ) |
| 58 |
15
|
eqeq1d |
|- ( u = <. x , y >. -> ( ( +e ` u ) = z <-> ( x +e y ) = z ) ) |
| 59 |
58
|
rexxp |
|- ( E. u e. ( X X. Y ) ( +e ` u ) = z <-> E. x e. X E. y e. Y ( x +e y ) = z ) |
| 60 |
57 59
|
sylib |
|- ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) -> E. x e. X E. y e. Y ( x +e y ) = z ) |
| 61 |
54 60
|
r19.29d2r |
|- ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) -> E. x e. X E. y e. Y ( ( x +e y ) <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) /\ ( x +e y ) = z ) ) |
| 62 |
|
ancom |
|- ( ( ( x +e y ) <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) /\ ( x +e y ) = z ) <-> ( ( x +e y ) = z /\ ( x +e y ) <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) ) |
| 63 |
62
|
2rexbii |
|- ( E. x e. X E. y e. Y ( ( x +e y ) <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) /\ ( x +e y ) = z ) <-> E. x e. X E. y e. Y ( ( x +e y ) = z /\ ( x +e y ) <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) ) |
| 64 |
61 63
|
sylib |
|- ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) -> E. x e. X E. y e. Y ( ( x +e y ) = z /\ ( x +e y ) <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) ) |
| 65 |
|
breq1 |
|- ( ( x +e y ) = z -> ( ( x +e y ) <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) <-> z <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) ) |
| 66 |
65
|
biimpa |
|- ( ( ( x +e y ) = z /\ ( x +e y ) <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> z <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) |
| 67 |
66
|
reximi |
|- ( E. y e. Y ( ( x +e y ) = z /\ ( x +e y ) <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> E. y e. Y z <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) |
| 68 |
67
|
reximi |
|- ( E. x e. X E. y e. Y ( ( x +e y ) = z /\ ( x +e y ) <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> E. x e. X E. y e. Y z <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) |
| 69 |
64 68
|
syl |
|- ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) -> E. x e. X E. y e. Y z <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) |
| 70 |
37 38 69
|
19.9d2r |
|- ( ( ph /\ z e. ( +e " ( X X. Y ) ) ) -> z <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) |
| 71 |
36 70
|
sylbi |
|- ( ( ph /\ z e. Z ) -> z <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) |
| 72 |
71
|
ralrimiva |
|- ( ph -> A. z e. Z z <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) |
| 73 |
1
|
ad2antrr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> X C_ RR* ) |
| 74 |
2
|
ad2antrr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> Y C_ RR* ) |
| 75 |
|
simplr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> z e. RR ) |
| 76 |
31
|
ad2antrr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> sup ( X , RR* , < ) e. RR* ) |
| 77 |
33
|
ad2antrr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> sup ( Y , RR* , < ) e. RR* ) |
| 78 |
3
|
ad2antrr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> sup ( X , RR* , < ) =/= -oo ) |
| 79 |
4
|
ad2antrr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> sup ( Y , RR* , < ) =/= -oo ) |
| 80 |
|
simpr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) |
| 81 |
75 76 77 78 79 80
|
xlt2addrd |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> E. a e. RR* E. b e. RR* ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) |
| 82 |
|
nfv |
|- F/ b ( X C_ RR* /\ Y C_ RR* ) |
| 83 |
|
nfcv |
|- F/_ b RR* |
| 84 |
|
nfre1 |
|- F/ b E. b e. RR* ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) |
| 85 |
83 84
|
nfrexw |
|- F/ b E. a e. RR* E. b e. RR* ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) |
| 86 |
82 85
|
nfan |
|- F/ b ( ( X C_ RR* /\ Y C_ RR* ) /\ E. a e. RR* E. b e. RR* ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) |
| 87 |
|
nfvd |
|- ( ( ( X C_ RR* /\ Y C_ RR* ) /\ E. a e. RR* E. b e. RR* ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) -> F/ a E. v e. X E. w e. Y z < ( v +e w ) ) |
| 88 |
|
nfvd |
|- ( ( ( X C_ RR* /\ Y C_ RR* ) /\ E. a e. RR* E. b e. RR* ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) -> F/ b E. v e. X E. w e. Y z < ( v +e w ) ) |
| 89 |
|
id |
|- ( ( X C_ RR* /\ Y C_ RR* ) -> ( X C_ RR* /\ Y C_ RR* ) ) |
| 90 |
89
|
ralrimivw |
|- ( ( X C_ RR* /\ Y C_ RR* ) -> A. b e. RR* ( X C_ RR* /\ Y C_ RR* ) ) |
| 91 |
90
|
ralrimivw |
|- ( ( X C_ RR* /\ Y C_ RR* ) -> A. a e. RR* A. b e. RR* ( X C_ RR* /\ Y C_ RR* ) ) |
| 92 |
91
|
adantr |
|- ( ( ( X C_ RR* /\ Y C_ RR* ) /\ E. a e. RR* E. b e. RR* ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) -> A. a e. RR* A. b e. RR* ( X C_ RR* /\ Y C_ RR* ) ) |
| 93 |
|
simpr |
|- ( ( ( X C_ RR* /\ Y C_ RR* ) /\ E. a e. RR* E. b e. RR* ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) -> E. a e. RR* E. b e. RR* ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) |
| 94 |
92 93
|
r19.29d2r |
|- ( ( ( X C_ RR* /\ Y C_ RR* ) /\ E. a e. RR* E. b e. RR* ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) -> E. a e. RR* E. b e. RR* ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) |
| 95 |
|
simplrr |
|- ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ ( v e. X /\ w e. Y /\ ( a < v /\ b < w ) ) ) -> ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) |
| 96 |
95
|
3anassrs |
|- ( ( ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ v e. X ) /\ w e. Y ) /\ ( a < v /\ b < w ) ) -> ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) |
| 97 |
96
|
simp1d |
|- ( ( ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ v e. X ) /\ w e. Y ) /\ ( a < v /\ b < w ) ) -> z = ( a +e b ) ) |
| 98 |
|
simp-4l |
|- ( ( ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ v e. X ) /\ w e. Y ) /\ ( a < v /\ b < w ) ) -> ( a e. RR* /\ b e. RR* ) ) |
| 99 |
|
simplrl |
|- ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ ( v e. X /\ w e. Y /\ ( a < v /\ b < w ) ) ) -> ( X C_ RR* /\ Y C_ RR* ) ) |
| 100 |
99
|
3anassrs |
|- ( ( ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ v e. X ) /\ w e. Y ) /\ ( a < v /\ b < w ) ) -> ( X C_ RR* /\ Y C_ RR* ) ) |
| 101 |
100
|
simpld |
|- ( ( ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ v e. X ) /\ w e. Y ) /\ ( a < v /\ b < w ) ) -> X C_ RR* ) |
| 102 |
|
simpllr |
|- ( ( ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ v e. X ) /\ w e. Y ) /\ ( a < v /\ b < w ) ) -> v e. X ) |
| 103 |
101 102
|
sseldd |
|- ( ( ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ v e. X ) /\ w e. Y ) /\ ( a < v /\ b < w ) ) -> v e. RR* ) |
| 104 |
100
|
simprd |
|- ( ( ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ v e. X ) /\ w e. Y ) /\ ( a < v /\ b < w ) ) -> Y C_ RR* ) |
| 105 |
|
simplr |
|- ( ( ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ v e. X ) /\ w e. Y ) /\ ( a < v /\ b < w ) ) -> w e. Y ) |
| 106 |
104 105
|
sseldd |
|- ( ( ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ v e. X ) /\ w e. Y ) /\ ( a < v /\ b < w ) ) -> w e. RR* ) |
| 107 |
98 103 106
|
jca32 |
|- ( ( ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ v e. X ) /\ w e. Y ) /\ ( a < v /\ b < w ) ) -> ( ( a e. RR* /\ b e. RR* ) /\ ( v e. RR* /\ w e. RR* ) ) ) |
| 108 |
|
simpr |
|- ( ( ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ v e. X ) /\ w e. Y ) /\ ( a < v /\ b < w ) ) -> ( a < v /\ b < w ) ) |
| 109 |
|
xlt2add |
|- ( ( ( a e. RR* /\ b e. RR* ) /\ ( v e. RR* /\ w e. RR* ) ) -> ( ( a < v /\ b < w ) -> ( a +e b ) < ( v +e w ) ) ) |
| 110 |
109
|
imp |
|- ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( v e. RR* /\ w e. RR* ) ) /\ ( a < v /\ b < w ) ) -> ( a +e b ) < ( v +e w ) ) |
| 111 |
|
breq1 |
|- ( z = ( a +e b ) -> ( z < ( v +e w ) <-> ( a +e b ) < ( v +e w ) ) ) |
| 112 |
111
|
biimpar |
|- ( ( z = ( a +e b ) /\ ( a +e b ) < ( v +e w ) ) -> z < ( v +e w ) ) |
| 113 |
110 112
|
sylan2 |
|- ( ( z = ( a +e b ) /\ ( ( ( a e. RR* /\ b e. RR* ) /\ ( v e. RR* /\ w e. RR* ) ) /\ ( a < v /\ b < w ) ) ) -> z < ( v +e w ) ) |
| 114 |
97 107 108 113
|
syl12anc |
|- ( ( ( ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) /\ v e. X ) /\ w e. Y ) /\ ( a < v /\ b < w ) ) -> z < ( v +e w ) ) |
| 115 |
|
simplll |
|- ( ( ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) /\ ( a e. RR* /\ b e. RR* ) ) -> X C_ RR* ) |
| 116 |
|
simprl |
|- ( ( ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) /\ ( a e. RR* /\ b e. RR* ) ) -> a e. RR* ) |
| 117 |
|
simplr2 |
|- ( ( ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) /\ ( a e. RR* /\ b e. RR* ) ) -> a < sup ( X , RR* , < ) ) |
| 118 |
|
supxrlub |
|- ( ( X C_ RR* /\ a e. RR* ) -> ( a < sup ( X , RR* , < ) <-> E. v e. X a < v ) ) |
| 119 |
118
|
biimpa |
|- ( ( ( X C_ RR* /\ a e. RR* ) /\ a < sup ( X , RR* , < ) ) -> E. v e. X a < v ) |
| 120 |
115 116 117 119
|
syl21anc |
|- ( ( ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) /\ ( a e. RR* /\ b e. RR* ) ) -> E. v e. X a < v ) |
| 121 |
|
simpllr |
|- ( ( ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) /\ ( a e. RR* /\ b e. RR* ) ) -> Y C_ RR* ) |
| 122 |
|
simprr |
|- ( ( ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) /\ ( a e. RR* /\ b e. RR* ) ) -> b e. RR* ) |
| 123 |
|
simplr3 |
|- ( ( ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) /\ ( a e. RR* /\ b e. RR* ) ) -> b < sup ( Y , RR* , < ) ) |
| 124 |
|
supxrlub |
|- ( ( Y C_ RR* /\ b e. RR* ) -> ( b < sup ( Y , RR* , < ) <-> E. w e. Y b < w ) ) |
| 125 |
124
|
biimpa |
|- ( ( ( Y C_ RR* /\ b e. RR* ) /\ b < sup ( Y , RR* , < ) ) -> E. w e. Y b < w ) |
| 126 |
121 122 123 125
|
syl21anc |
|- ( ( ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) /\ ( a e. RR* /\ b e. RR* ) ) -> E. w e. Y b < w ) |
| 127 |
|
reeanv |
|- ( E. v e. X E. w e. Y ( a < v /\ b < w ) <-> ( E. v e. X a < v /\ E. w e. Y b < w ) ) |
| 128 |
120 126 127
|
sylanbrc |
|- ( ( ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) /\ ( a e. RR* /\ b e. RR* ) ) -> E. v e. X E. w e. Y ( a < v /\ b < w ) ) |
| 129 |
128
|
ancoms |
|- ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) -> E. v e. X E. w e. Y ( a < v /\ b < w ) ) |
| 130 |
114 129
|
reximddv2 |
|- ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) ) -> E. v e. X E. w e. Y z < ( v +e w ) ) |
| 131 |
130
|
ex |
|- ( ( a e. RR* /\ b e. RR* ) -> ( ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) -> E. v e. X E. w e. Y z < ( v +e w ) ) ) |
| 132 |
131
|
reximdva |
|- ( a e. RR* -> ( E. b e. RR* ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) -> E. b e. RR* E. v e. X E. w e. Y z < ( v +e w ) ) ) |
| 133 |
132
|
reximia |
|- ( E. a e. RR* E. b e. RR* ( ( X C_ RR* /\ Y C_ RR* ) /\ ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) -> E. a e. RR* E. b e. RR* E. v e. X E. w e. Y z < ( v +e w ) ) |
| 134 |
94 133
|
syl |
|- ( ( ( X C_ RR* /\ Y C_ RR* ) /\ E. a e. RR* E. b e. RR* ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) -> E. a e. RR* E. b e. RR* E. v e. X E. w e. Y z < ( v +e w ) ) |
| 135 |
86 87 88 134
|
19.9d2rf |
|- ( ( ( X C_ RR* /\ Y C_ RR* ) /\ E. a e. RR* E. b e. RR* ( z = ( a +e b ) /\ a < sup ( X , RR* , < ) /\ b < sup ( Y , RR* , < ) ) ) -> E. v e. X E. w e. Y z < ( v +e w ) ) |
| 136 |
73 74 81 135
|
syl21anc |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> E. v e. X E. w e. Y z < ( v +e w ) ) |
| 137 |
|
simprl |
|- ( ( ph /\ ( v e. X /\ w e. Y ) ) -> v e. X ) |
| 138 |
|
simprr |
|- ( ( ph /\ ( v e. X /\ w e. Y ) ) -> w e. Y ) |
| 139 |
21
|
a1i |
|- ( ( ph /\ ( v e. X /\ w e. Y ) ) -> Fun +e ) |
| 140 |
25
|
adantr |
|- ( ( ph /\ ( v e. X /\ w e. Y ) ) -> ( X X. Y ) C_ dom +e ) |
| 141 |
137 138 139 140
|
elovimad |
|- ( ( ph /\ ( v e. X /\ w e. Y ) ) -> ( v +e w ) e. ( +e " ( X X. Y ) ) ) |
| 142 |
5
|
eleq2d |
|- ( ph -> ( ( v +e w ) e. Z <-> ( v +e w ) e. ( +e " ( X X. Y ) ) ) ) |
| 143 |
142
|
adantr |
|- ( ( ph /\ ( v e. X /\ w e. Y ) ) -> ( ( v +e w ) e. Z <-> ( v +e w ) e. ( +e " ( X X. Y ) ) ) ) |
| 144 |
141 143
|
mpbird |
|- ( ( ph /\ ( v e. X /\ w e. Y ) ) -> ( v +e w ) e. Z ) |
| 145 |
|
simpr |
|- ( ( ( ph /\ ( v e. X /\ w e. Y ) ) /\ k = ( v +e w ) ) -> k = ( v +e w ) ) |
| 146 |
145
|
breq2d |
|- ( ( ( ph /\ ( v e. X /\ w e. Y ) ) /\ k = ( v +e w ) ) -> ( z < k <-> z < ( v +e w ) ) ) |
| 147 |
144 146
|
rspcedv |
|- ( ( ph /\ ( v e. X /\ w e. Y ) ) -> ( z < ( v +e w ) -> E. k e. Z z < k ) ) |
| 148 |
147
|
rexlimdvva |
|- ( ph -> ( E. v e. X E. w e. Y z < ( v +e w ) -> E. k e. Z z < k ) ) |
| 149 |
148
|
ad2antrr |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> ( E. v e. X E. w e. Y z < ( v +e w ) -> E. k e. Z z < k ) ) |
| 150 |
136 149
|
mpd |
|- ( ( ( ph /\ z e. RR ) /\ z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) -> E. k e. Z z < k ) |
| 151 |
150
|
ex |
|- ( ( ph /\ z e. RR ) -> ( z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) -> E. k e. Z z < k ) ) |
| 152 |
151
|
ralrimiva |
|- ( ph -> A. z e. RR ( z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) -> E. k e. Z z < k ) ) |
| 153 |
|
supxr2 |
|- ( ( ( Z C_ RR* /\ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) e. RR* ) /\ ( A. z e. Z z <_ ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) /\ A. z e. RR ( z < ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) -> E. k e. Z z < k ) ) ) -> sup ( Z , RR* , < ) = ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) |
| 154 |
29 34 72 152 153
|
syl22anc |
|- ( ph -> sup ( Z , RR* , < ) = ( sup ( X , RR* , < ) +e sup ( Y , RR* , < ) ) ) |