| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xlt2addrd.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
xlt2addrd.2 |
|- ( ph -> B e. RR* ) |
| 3 |
|
xlt2addrd.3 |
|- ( ph -> C e. RR* ) |
| 4 |
|
xlt2addrd.4 |
|- ( ph -> B =/= -oo ) |
| 5 |
|
xlt2addrd.5 |
|- ( ph -> C =/= -oo ) |
| 6 |
|
xlt2addrd.6 |
|- ( ph -> A < ( B +e C ) ) |
| 7 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> A e. RR* ) |
| 9 |
|
0xr |
|- 0 e. RR* |
| 10 |
9
|
a1i |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> 0 e. RR* ) |
| 11 |
|
xaddrid |
|- ( A e. RR* -> ( A +e 0 ) = A ) |
| 12 |
11
|
eqcomd |
|- ( A e. RR* -> A = ( A +e 0 ) ) |
| 13 |
8 12
|
syl |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> A = ( A +e 0 ) ) |
| 14 |
1
|
ad2antrr |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> A e. RR ) |
| 15 |
|
ltpnf |
|- ( A e. RR -> A < +oo ) |
| 16 |
14 15
|
syl |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> A < +oo ) |
| 17 |
|
simplr |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> B = +oo ) |
| 18 |
16 17
|
breqtrrd |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> A < B ) |
| 19 |
|
0ltpnf |
|- 0 < +oo |
| 20 |
|
simpr |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> C = +oo ) |
| 21 |
19 20
|
breqtrrid |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> 0 < C ) |
| 22 |
|
oveq1 |
|- ( b = A -> ( b +e c ) = ( A +e c ) ) |
| 23 |
22
|
eqeq2d |
|- ( b = A -> ( A = ( b +e c ) <-> A = ( A +e c ) ) ) |
| 24 |
|
breq1 |
|- ( b = A -> ( b < B <-> A < B ) ) |
| 25 |
23 24
|
3anbi12d |
|- ( b = A -> ( ( A = ( b +e c ) /\ b < B /\ c < C ) <-> ( A = ( A +e c ) /\ A < B /\ c < C ) ) ) |
| 26 |
|
oveq2 |
|- ( c = 0 -> ( A +e c ) = ( A +e 0 ) ) |
| 27 |
26
|
eqeq2d |
|- ( c = 0 -> ( A = ( A +e c ) <-> A = ( A +e 0 ) ) ) |
| 28 |
|
breq1 |
|- ( c = 0 -> ( c < C <-> 0 < C ) ) |
| 29 |
27 28
|
3anbi13d |
|- ( c = 0 -> ( ( A = ( A +e c ) /\ A < B /\ c < C ) <-> ( A = ( A +e 0 ) /\ A < B /\ 0 < C ) ) ) |
| 30 |
25 29
|
rspc2ev |
|- ( ( A e. RR* /\ 0 e. RR* /\ ( A = ( A +e 0 ) /\ A < B /\ 0 < C ) ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
| 31 |
8 10 13 18 21 30
|
syl113anc |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
| 32 |
7
|
ad2antrr |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> A e. RR* ) |
| 33 |
3
|
ad2antrr |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> C e. RR* ) |
| 34 |
|
1xr |
|- 1 e. RR* |
| 35 |
34
|
a1i |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> 1 e. RR* ) |
| 36 |
35
|
xnegcld |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> -e 1 e. RR* ) |
| 37 |
33 36
|
xaddcld |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C +e -e 1 ) e. RR* ) |
| 38 |
37
|
xnegcld |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> -e ( C +e -e 1 ) e. RR* ) |
| 39 |
32 38
|
xaddcld |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A +e -e ( C +e -e 1 ) ) e. RR* ) |
| 40 |
1
|
ad2antrr |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> A e. RR ) |
| 41 |
40
|
renemnfd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> A =/= -oo ) |
| 42 |
|
xrnepnf |
|- ( ( C e. RR* /\ C =/= +oo ) <-> ( C e. RR \/ C = -oo ) ) |
| 43 |
42
|
biimpi |
|- ( ( C e. RR* /\ C =/= +oo ) -> ( C e. RR \/ C = -oo ) ) |
| 44 |
33 43
|
sylancom |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C e. RR \/ C = -oo ) ) |
| 45 |
44
|
orcomd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C = -oo \/ C e. RR ) ) |
| 46 |
5
|
ad2antrr |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> C =/= -oo ) |
| 47 |
46
|
neneqd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> -. C = -oo ) |
| 48 |
|
pm2.53 |
|- ( ( C = -oo \/ C e. RR ) -> ( -. C = -oo -> C e. RR ) ) |
| 49 |
45 47 48
|
sylc |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> C e. RR ) |
| 50 |
|
1re |
|- 1 e. RR |
| 51 |
|
rexsub |
|- ( ( C e. RR /\ 1 e. RR ) -> ( C +e -e 1 ) = ( C - 1 ) ) |
| 52 |
49 50 51
|
sylancl |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C +e -e 1 ) = ( C - 1 ) ) |
| 53 |
|
resubcl |
|- ( ( C e. RR /\ 1 e. RR ) -> ( C - 1 ) e. RR ) |
| 54 |
49 50 53
|
sylancl |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C - 1 ) e. RR ) |
| 55 |
52 54
|
eqeltrd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C +e -e 1 ) e. RR ) |
| 56 |
|
rexneg |
|- ( ( C +e -e 1 ) e. RR -> -e ( C +e -e 1 ) = -u ( C +e -e 1 ) ) |
| 57 |
55 56
|
syl |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> -e ( C +e -e 1 ) = -u ( C +e -e 1 ) ) |
| 58 |
55
|
renegcld |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> -u ( C +e -e 1 ) e. RR ) |
| 59 |
57 58
|
eqeltrd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> -e ( C +e -e 1 ) e. RR ) |
| 60 |
59
|
renemnfd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> -e ( C +e -e 1 ) =/= -oo ) |
| 61 |
55
|
renemnfd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C +e -e 1 ) =/= -oo ) |
| 62 |
|
xaddass |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( -e ( C +e -e 1 ) e. RR* /\ -e ( C +e -e 1 ) =/= -oo ) /\ ( ( C +e -e 1 ) e. RR* /\ ( C +e -e 1 ) =/= -oo ) ) -> ( ( A +e -e ( C +e -e 1 ) ) +e ( C +e -e 1 ) ) = ( A +e ( -e ( C +e -e 1 ) +e ( C +e -e 1 ) ) ) ) |
| 63 |
32 41 38 60 37 61 62
|
syl222anc |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( ( A +e -e ( C +e -e 1 ) ) +e ( C +e -e 1 ) ) = ( A +e ( -e ( C +e -e 1 ) +e ( C +e -e 1 ) ) ) ) |
| 64 |
|
xaddcom |
|- ( ( -e ( C +e -e 1 ) e. RR* /\ ( C +e -e 1 ) e. RR* ) -> ( -e ( C +e -e 1 ) +e ( C +e -e 1 ) ) = ( ( C +e -e 1 ) +e -e ( C +e -e 1 ) ) ) |
| 65 |
38 37 64
|
syl2anc |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( -e ( C +e -e 1 ) +e ( C +e -e 1 ) ) = ( ( C +e -e 1 ) +e -e ( C +e -e 1 ) ) ) |
| 66 |
|
xnegid |
|- ( ( C +e -e 1 ) e. RR* -> ( ( C +e -e 1 ) +e -e ( C +e -e 1 ) ) = 0 ) |
| 67 |
37 66
|
syl |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( ( C +e -e 1 ) +e -e ( C +e -e 1 ) ) = 0 ) |
| 68 |
65 67
|
eqtrd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( -e ( C +e -e 1 ) +e ( C +e -e 1 ) ) = 0 ) |
| 69 |
68
|
oveq2d |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A +e ( -e ( C +e -e 1 ) +e ( C +e -e 1 ) ) ) = ( A +e 0 ) ) |
| 70 |
32 11
|
syl |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A +e 0 ) = A ) |
| 71 |
63 69 70
|
3eqtrrd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> A = ( ( A +e -e ( C +e -e 1 ) ) +e ( C +e -e 1 ) ) ) |
| 72 |
40 54
|
resubcld |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A - ( C - 1 ) ) e. RR ) |
| 73 |
|
ltpnf |
|- ( ( A - ( C - 1 ) ) e. RR -> ( A - ( C - 1 ) ) < +oo ) |
| 74 |
72 73
|
syl |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A - ( C - 1 ) ) < +oo ) |
| 75 |
|
rexsub |
|- ( ( A e. RR /\ ( C +e -e 1 ) e. RR ) -> ( A +e -e ( C +e -e 1 ) ) = ( A - ( C +e -e 1 ) ) ) |
| 76 |
40 55 75
|
syl2anc |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A +e -e ( C +e -e 1 ) ) = ( A - ( C +e -e 1 ) ) ) |
| 77 |
52
|
oveq2d |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A - ( C +e -e 1 ) ) = ( A - ( C - 1 ) ) ) |
| 78 |
76 77
|
eqtrd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A +e -e ( C +e -e 1 ) ) = ( A - ( C - 1 ) ) ) |
| 79 |
|
simplr |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> B = +oo ) |
| 80 |
74 78 79
|
3brtr4d |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A +e -e ( C +e -e 1 ) ) < B ) |
| 81 |
49
|
ltm1d |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C - 1 ) < C ) |
| 82 |
52 81
|
eqbrtrd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C +e -e 1 ) < C ) |
| 83 |
|
oveq1 |
|- ( b = ( A +e -e ( C +e -e 1 ) ) -> ( b +e c ) = ( ( A +e -e ( C +e -e 1 ) ) +e c ) ) |
| 84 |
83
|
eqeq2d |
|- ( b = ( A +e -e ( C +e -e 1 ) ) -> ( A = ( b +e c ) <-> A = ( ( A +e -e ( C +e -e 1 ) ) +e c ) ) ) |
| 85 |
|
breq1 |
|- ( b = ( A +e -e ( C +e -e 1 ) ) -> ( b < B <-> ( A +e -e ( C +e -e 1 ) ) < B ) ) |
| 86 |
84 85
|
3anbi12d |
|- ( b = ( A +e -e ( C +e -e 1 ) ) -> ( ( A = ( b +e c ) /\ b < B /\ c < C ) <-> ( A = ( ( A +e -e ( C +e -e 1 ) ) +e c ) /\ ( A +e -e ( C +e -e 1 ) ) < B /\ c < C ) ) ) |
| 87 |
|
oveq2 |
|- ( c = ( C +e -e 1 ) -> ( ( A +e -e ( C +e -e 1 ) ) +e c ) = ( ( A +e -e ( C +e -e 1 ) ) +e ( C +e -e 1 ) ) ) |
| 88 |
87
|
eqeq2d |
|- ( c = ( C +e -e 1 ) -> ( A = ( ( A +e -e ( C +e -e 1 ) ) +e c ) <-> A = ( ( A +e -e ( C +e -e 1 ) ) +e ( C +e -e 1 ) ) ) ) |
| 89 |
|
breq1 |
|- ( c = ( C +e -e 1 ) -> ( c < C <-> ( C +e -e 1 ) < C ) ) |
| 90 |
88 89
|
3anbi13d |
|- ( c = ( C +e -e 1 ) -> ( ( A = ( ( A +e -e ( C +e -e 1 ) ) +e c ) /\ ( A +e -e ( C +e -e 1 ) ) < B /\ c < C ) <-> ( A = ( ( A +e -e ( C +e -e 1 ) ) +e ( C +e -e 1 ) ) /\ ( A +e -e ( C +e -e 1 ) ) < B /\ ( C +e -e 1 ) < C ) ) ) |
| 91 |
86 90
|
rspc2ev |
|- ( ( ( A +e -e ( C +e -e 1 ) ) e. RR* /\ ( C +e -e 1 ) e. RR* /\ ( A = ( ( A +e -e ( C +e -e 1 ) ) +e ( C +e -e 1 ) ) /\ ( A +e -e ( C +e -e 1 ) ) < B /\ ( C +e -e 1 ) < C ) ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
| 92 |
39 37 71 80 82 91
|
syl113anc |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
| 93 |
31 92
|
pm2.61dane |
|- ( ( ph /\ B = +oo ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
| 94 |
2
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> B e. RR* ) |
| 95 |
34
|
a1i |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> 1 e. RR* ) |
| 96 |
95
|
xnegcld |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> -e 1 e. RR* ) |
| 97 |
94 96
|
xaddcld |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B +e -e 1 ) e. RR* ) |
| 98 |
7
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> A e. RR* ) |
| 99 |
97
|
xnegcld |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> -e ( B +e -e 1 ) e. RR* ) |
| 100 |
98 99
|
xaddcld |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A +e -e ( B +e -e 1 ) ) e. RR* ) |
| 101 |
|
xaddcom |
|- ( ( ( B +e -e 1 ) e. RR* /\ ( A +e -e ( B +e -e 1 ) ) e. RR* ) -> ( ( B +e -e 1 ) +e ( A +e -e ( B +e -e 1 ) ) ) = ( ( A +e -e ( B +e -e 1 ) ) +e ( B +e -e 1 ) ) ) |
| 102 |
97 100 101
|
syl2anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( ( B +e -e 1 ) +e ( A +e -e ( B +e -e 1 ) ) ) = ( ( A +e -e ( B +e -e 1 ) ) +e ( B +e -e 1 ) ) ) |
| 103 |
1
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> A e. RR ) |
| 104 |
103
|
renemnfd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> A =/= -oo ) |
| 105 |
|
simplr |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> B =/= +oo ) |
| 106 |
|
xrnepnf |
|- ( ( B e. RR* /\ B =/= +oo ) <-> ( B e. RR \/ B = -oo ) ) |
| 107 |
106
|
biimpi |
|- ( ( B e. RR* /\ B =/= +oo ) -> ( B e. RR \/ B = -oo ) ) |
| 108 |
94 105 107
|
syl2anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B e. RR \/ B = -oo ) ) |
| 109 |
108
|
orcomd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B = -oo \/ B e. RR ) ) |
| 110 |
4
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> B =/= -oo ) |
| 111 |
110
|
neneqd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> -. B = -oo ) |
| 112 |
|
pm2.53 |
|- ( ( B = -oo \/ B e. RR ) -> ( -. B = -oo -> B e. RR ) ) |
| 113 |
109 111 112
|
sylc |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> B e. RR ) |
| 114 |
|
rexsub |
|- ( ( B e. RR /\ 1 e. RR ) -> ( B +e -e 1 ) = ( B - 1 ) ) |
| 115 |
113 50 114
|
sylancl |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B +e -e 1 ) = ( B - 1 ) ) |
| 116 |
|
resubcl |
|- ( ( B e. RR /\ 1 e. RR ) -> ( B - 1 ) e. RR ) |
| 117 |
113 50 116
|
sylancl |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B - 1 ) e. RR ) |
| 118 |
115 117
|
eqeltrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B +e -e 1 ) e. RR ) |
| 119 |
|
rexneg |
|- ( ( B +e -e 1 ) e. RR -> -e ( B +e -e 1 ) = -u ( B +e -e 1 ) ) |
| 120 |
118 119
|
syl |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> -e ( B +e -e 1 ) = -u ( B +e -e 1 ) ) |
| 121 |
118
|
renegcld |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> -u ( B +e -e 1 ) e. RR ) |
| 122 |
120 121
|
eqeltrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> -e ( B +e -e 1 ) e. RR ) |
| 123 |
122
|
renemnfd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> -e ( B +e -e 1 ) =/= -oo ) |
| 124 |
118
|
renemnfd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B +e -e 1 ) =/= -oo ) |
| 125 |
|
xaddass |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( -e ( B +e -e 1 ) e. RR* /\ -e ( B +e -e 1 ) =/= -oo ) /\ ( ( B +e -e 1 ) e. RR* /\ ( B +e -e 1 ) =/= -oo ) ) -> ( ( A +e -e ( B +e -e 1 ) ) +e ( B +e -e 1 ) ) = ( A +e ( -e ( B +e -e 1 ) +e ( B +e -e 1 ) ) ) ) |
| 126 |
98 104 99 123 97 124 125
|
syl222anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( ( A +e -e ( B +e -e 1 ) ) +e ( B +e -e 1 ) ) = ( A +e ( -e ( B +e -e 1 ) +e ( B +e -e 1 ) ) ) ) |
| 127 |
|
xaddcom |
|- ( ( -e ( B +e -e 1 ) e. RR* /\ ( B +e -e 1 ) e. RR* ) -> ( -e ( B +e -e 1 ) +e ( B +e -e 1 ) ) = ( ( B +e -e 1 ) +e -e ( B +e -e 1 ) ) ) |
| 128 |
99 97 127
|
syl2anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( -e ( B +e -e 1 ) +e ( B +e -e 1 ) ) = ( ( B +e -e 1 ) +e -e ( B +e -e 1 ) ) ) |
| 129 |
|
xnegid |
|- ( ( B +e -e 1 ) e. RR* -> ( ( B +e -e 1 ) +e -e ( B +e -e 1 ) ) = 0 ) |
| 130 |
97 129
|
syl |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( ( B +e -e 1 ) +e -e ( B +e -e 1 ) ) = 0 ) |
| 131 |
128 130
|
eqtrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( -e ( B +e -e 1 ) +e ( B +e -e 1 ) ) = 0 ) |
| 132 |
131
|
oveq2d |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A +e ( -e ( B +e -e 1 ) +e ( B +e -e 1 ) ) ) = ( A +e 0 ) ) |
| 133 |
98 11
|
syl |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A +e 0 ) = A ) |
| 134 |
132 133
|
eqtrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A +e ( -e ( B +e -e 1 ) +e ( B +e -e 1 ) ) ) = A ) |
| 135 |
102 126 134
|
3eqtrrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> A = ( ( B +e -e 1 ) +e ( A +e -e ( B +e -e 1 ) ) ) ) |
| 136 |
113
|
ltm1d |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B - 1 ) < B ) |
| 137 |
115 136
|
eqbrtrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B +e -e 1 ) < B ) |
| 138 |
103 117
|
resubcld |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A - ( B - 1 ) ) e. RR ) |
| 139 |
|
ltpnf |
|- ( ( A - ( B - 1 ) ) e. RR -> ( A - ( B - 1 ) ) < +oo ) |
| 140 |
138 139
|
syl |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A - ( B - 1 ) ) < +oo ) |
| 141 |
|
rexsub |
|- ( ( A e. RR /\ ( B +e -e 1 ) e. RR ) -> ( A +e -e ( B +e -e 1 ) ) = ( A - ( B +e -e 1 ) ) ) |
| 142 |
103 118 141
|
syl2anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A +e -e ( B +e -e 1 ) ) = ( A - ( B +e -e 1 ) ) ) |
| 143 |
115
|
oveq2d |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A - ( B +e -e 1 ) ) = ( A - ( B - 1 ) ) ) |
| 144 |
142 143
|
eqtrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A +e -e ( B +e -e 1 ) ) = ( A - ( B - 1 ) ) ) |
| 145 |
|
simpr |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> C = +oo ) |
| 146 |
140 144 145
|
3brtr4d |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A +e -e ( B +e -e 1 ) ) < C ) |
| 147 |
|
oveq1 |
|- ( b = ( B +e -e 1 ) -> ( b +e c ) = ( ( B +e -e 1 ) +e c ) ) |
| 148 |
147
|
eqeq2d |
|- ( b = ( B +e -e 1 ) -> ( A = ( b +e c ) <-> A = ( ( B +e -e 1 ) +e c ) ) ) |
| 149 |
|
breq1 |
|- ( b = ( B +e -e 1 ) -> ( b < B <-> ( B +e -e 1 ) < B ) ) |
| 150 |
148 149
|
3anbi12d |
|- ( b = ( B +e -e 1 ) -> ( ( A = ( b +e c ) /\ b < B /\ c < C ) <-> ( A = ( ( B +e -e 1 ) +e c ) /\ ( B +e -e 1 ) < B /\ c < C ) ) ) |
| 151 |
|
oveq2 |
|- ( c = ( A +e -e ( B +e -e 1 ) ) -> ( ( B +e -e 1 ) +e c ) = ( ( B +e -e 1 ) +e ( A +e -e ( B +e -e 1 ) ) ) ) |
| 152 |
151
|
eqeq2d |
|- ( c = ( A +e -e ( B +e -e 1 ) ) -> ( A = ( ( B +e -e 1 ) +e c ) <-> A = ( ( B +e -e 1 ) +e ( A +e -e ( B +e -e 1 ) ) ) ) ) |
| 153 |
|
breq1 |
|- ( c = ( A +e -e ( B +e -e 1 ) ) -> ( c < C <-> ( A +e -e ( B +e -e 1 ) ) < C ) ) |
| 154 |
152 153
|
3anbi13d |
|- ( c = ( A +e -e ( B +e -e 1 ) ) -> ( ( A = ( ( B +e -e 1 ) +e c ) /\ ( B +e -e 1 ) < B /\ c < C ) <-> ( A = ( ( B +e -e 1 ) +e ( A +e -e ( B +e -e 1 ) ) ) /\ ( B +e -e 1 ) < B /\ ( A +e -e ( B +e -e 1 ) ) < C ) ) ) |
| 155 |
150 154
|
rspc2ev |
|- ( ( ( B +e -e 1 ) e. RR* /\ ( A +e -e ( B +e -e 1 ) ) e. RR* /\ ( A = ( ( B +e -e 1 ) +e ( A +e -e ( B +e -e 1 ) ) ) /\ ( B +e -e 1 ) < B /\ ( A +e -e ( B +e -e 1 ) ) < C ) ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
| 156 |
97 100 135 137 146 155
|
syl113anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
| 157 |
1
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> A e. RR ) |
| 158 |
2
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> B e. RR* ) |
| 159 |
|
simplr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> B =/= +oo ) |
| 160 |
158 159 107
|
syl2anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> ( B e. RR \/ B = -oo ) ) |
| 161 |
160
|
orcomd |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> ( B = -oo \/ B e. RR ) ) |
| 162 |
4
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> B =/= -oo ) |
| 163 |
162
|
neneqd |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> -. B = -oo ) |
| 164 |
161 163 112
|
sylc |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> B e. RR ) |
| 165 |
3
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> C e. RR* ) |
| 166 |
165 43
|
sylancom |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> ( C e. RR \/ C = -oo ) ) |
| 167 |
166
|
orcomd |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> ( C = -oo \/ C e. RR ) ) |
| 168 |
5
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> C =/= -oo ) |
| 169 |
168
|
neneqd |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> -. C = -oo ) |
| 170 |
167 169 48
|
sylc |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> C e. RR ) |
| 171 |
6
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> A < ( B +e C ) ) |
| 172 |
|
rexadd |
|- ( ( B e. RR /\ C e. RR ) -> ( B +e C ) = ( B + C ) ) |
| 173 |
164 170 172
|
syl2anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> ( B +e C ) = ( B + C ) ) |
| 174 |
171 173
|
breqtrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> A < ( B + C ) ) |
| 175 |
157 164 170 174
|
lt2addrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> E. b e. RR E. c e. RR ( A = ( b + c ) /\ b < B /\ c < C ) ) |
| 176 |
|
rexadd |
|- ( ( b e. RR /\ c e. RR ) -> ( b +e c ) = ( b + c ) ) |
| 177 |
176
|
eqeq2d |
|- ( ( b e. RR /\ c e. RR ) -> ( A = ( b +e c ) <-> A = ( b + c ) ) ) |
| 178 |
177
|
3anbi1d |
|- ( ( b e. RR /\ c e. RR ) -> ( ( A = ( b +e c ) /\ b < B /\ c < C ) <-> ( A = ( b + c ) /\ b < B /\ c < C ) ) ) |
| 179 |
178
|
2rexbiia |
|- ( E. b e. RR E. c e. RR ( A = ( b +e c ) /\ b < B /\ c < C ) <-> E. b e. RR E. c e. RR ( A = ( b + c ) /\ b < B /\ c < C ) ) |
| 180 |
175 179
|
sylibr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> E. b e. RR E. c e. RR ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
| 181 |
|
ressxr |
|- RR C_ RR* |
| 182 |
|
ssrexv |
|- ( RR C_ RR* -> ( E. c e. RR ( A = ( b +e c ) /\ b < B /\ c < C ) -> E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) ) |
| 183 |
181 182
|
ax-mp |
|- ( E. c e. RR ( A = ( b +e c ) /\ b < B /\ c < C ) -> E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
| 184 |
183
|
reximi |
|- ( E. b e. RR E. c e. RR ( A = ( b +e c ) /\ b < B /\ c < C ) -> E. b e. RR E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
| 185 |
|
ssrexv |
|- ( RR C_ RR* -> ( E. b e. RR E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) ) |
| 186 |
181 185
|
ax-mp |
|- ( E. b e. RR E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
| 187 |
180 184 186
|
3syl |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
| 188 |
156 187
|
pm2.61dane |
|- ( ( ph /\ B =/= +oo ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
| 189 |
93 188
|
pm2.61dane |
|- ( ph -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |