Step |
Hyp |
Ref |
Expression |
1 |
|
xlt2addrd.1 |
|- ( ph -> A e. RR ) |
2 |
|
xlt2addrd.2 |
|- ( ph -> B e. RR* ) |
3 |
|
xlt2addrd.3 |
|- ( ph -> C e. RR* ) |
4 |
|
xlt2addrd.4 |
|- ( ph -> B =/= -oo ) |
5 |
|
xlt2addrd.5 |
|- ( ph -> C =/= -oo ) |
6 |
|
xlt2addrd.6 |
|- ( ph -> A < ( B +e C ) ) |
7 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
8 |
7
|
ad2antrr |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> A e. RR* ) |
9 |
|
0xr |
|- 0 e. RR* |
10 |
9
|
a1i |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> 0 e. RR* ) |
11 |
|
xaddid1 |
|- ( A e. RR* -> ( A +e 0 ) = A ) |
12 |
11
|
eqcomd |
|- ( A e. RR* -> A = ( A +e 0 ) ) |
13 |
8 12
|
syl |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> A = ( A +e 0 ) ) |
14 |
1
|
ad2antrr |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> A e. RR ) |
15 |
|
ltpnf |
|- ( A e. RR -> A < +oo ) |
16 |
14 15
|
syl |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> A < +oo ) |
17 |
|
simplr |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> B = +oo ) |
18 |
16 17
|
breqtrrd |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> A < B ) |
19 |
|
0ltpnf |
|- 0 < +oo |
20 |
|
simpr |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> C = +oo ) |
21 |
19 20
|
breqtrrid |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> 0 < C ) |
22 |
|
oveq1 |
|- ( b = A -> ( b +e c ) = ( A +e c ) ) |
23 |
22
|
eqeq2d |
|- ( b = A -> ( A = ( b +e c ) <-> A = ( A +e c ) ) ) |
24 |
|
breq1 |
|- ( b = A -> ( b < B <-> A < B ) ) |
25 |
23 24
|
3anbi12d |
|- ( b = A -> ( ( A = ( b +e c ) /\ b < B /\ c < C ) <-> ( A = ( A +e c ) /\ A < B /\ c < C ) ) ) |
26 |
|
oveq2 |
|- ( c = 0 -> ( A +e c ) = ( A +e 0 ) ) |
27 |
26
|
eqeq2d |
|- ( c = 0 -> ( A = ( A +e c ) <-> A = ( A +e 0 ) ) ) |
28 |
|
breq1 |
|- ( c = 0 -> ( c < C <-> 0 < C ) ) |
29 |
27 28
|
3anbi13d |
|- ( c = 0 -> ( ( A = ( A +e c ) /\ A < B /\ c < C ) <-> ( A = ( A +e 0 ) /\ A < B /\ 0 < C ) ) ) |
30 |
25 29
|
rspc2ev |
|- ( ( A e. RR* /\ 0 e. RR* /\ ( A = ( A +e 0 ) /\ A < B /\ 0 < C ) ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
31 |
8 10 13 18 21 30
|
syl113anc |
|- ( ( ( ph /\ B = +oo ) /\ C = +oo ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
32 |
7
|
ad2antrr |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> A e. RR* ) |
33 |
3
|
ad2antrr |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> C e. RR* ) |
34 |
|
1xr |
|- 1 e. RR* |
35 |
34
|
a1i |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> 1 e. RR* ) |
36 |
35
|
xnegcld |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> -e 1 e. RR* ) |
37 |
33 36
|
xaddcld |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C +e -e 1 ) e. RR* ) |
38 |
37
|
xnegcld |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> -e ( C +e -e 1 ) e. RR* ) |
39 |
32 38
|
xaddcld |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A +e -e ( C +e -e 1 ) ) e. RR* ) |
40 |
1
|
ad2antrr |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> A e. RR ) |
41 |
40
|
renemnfd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> A =/= -oo ) |
42 |
|
xrnepnf |
|- ( ( C e. RR* /\ C =/= +oo ) <-> ( C e. RR \/ C = -oo ) ) |
43 |
42
|
biimpi |
|- ( ( C e. RR* /\ C =/= +oo ) -> ( C e. RR \/ C = -oo ) ) |
44 |
33 43
|
sylancom |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C e. RR \/ C = -oo ) ) |
45 |
44
|
orcomd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C = -oo \/ C e. RR ) ) |
46 |
5
|
ad2antrr |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> C =/= -oo ) |
47 |
46
|
neneqd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> -. C = -oo ) |
48 |
|
pm2.53 |
|- ( ( C = -oo \/ C e. RR ) -> ( -. C = -oo -> C e. RR ) ) |
49 |
45 47 48
|
sylc |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> C e. RR ) |
50 |
|
1re |
|- 1 e. RR |
51 |
|
rexsub |
|- ( ( C e. RR /\ 1 e. RR ) -> ( C +e -e 1 ) = ( C - 1 ) ) |
52 |
49 50 51
|
sylancl |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C +e -e 1 ) = ( C - 1 ) ) |
53 |
|
resubcl |
|- ( ( C e. RR /\ 1 e. RR ) -> ( C - 1 ) e. RR ) |
54 |
49 50 53
|
sylancl |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C - 1 ) e. RR ) |
55 |
52 54
|
eqeltrd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C +e -e 1 ) e. RR ) |
56 |
|
rexneg |
|- ( ( C +e -e 1 ) e. RR -> -e ( C +e -e 1 ) = -u ( C +e -e 1 ) ) |
57 |
55 56
|
syl |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> -e ( C +e -e 1 ) = -u ( C +e -e 1 ) ) |
58 |
55
|
renegcld |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> -u ( C +e -e 1 ) e. RR ) |
59 |
57 58
|
eqeltrd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> -e ( C +e -e 1 ) e. RR ) |
60 |
59
|
renemnfd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> -e ( C +e -e 1 ) =/= -oo ) |
61 |
55
|
renemnfd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C +e -e 1 ) =/= -oo ) |
62 |
|
xaddass |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( -e ( C +e -e 1 ) e. RR* /\ -e ( C +e -e 1 ) =/= -oo ) /\ ( ( C +e -e 1 ) e. RR* /\ ( C +e -e 1 ) =/= -oo ) ) -> ( ( A +e -e ( C +e -e 1 ) ) +e ( C +e -e 1 ) ) = ( A +e ( -e ( C +e -e 1 ) +e ( C +e -e 1 ) ) ) ) |
63 |
32 41 38 60 37 61 62
|
syl222anc |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( ( A +e -e ( C +e -e 1 ) ) +e ( C +e -e 1 ) ) = ( A +e ( -e ( C +e -e 1 ) +e ( C +e -e 1 ) ) ) ) |
64 |
|
xaddcom |
|- ( ( -e ( C +e -e 1 ) e. RR* /\ ( C +e -e 1 ) e. RR* ) -> ( -e ( C +e -e 1 ) +e ( C +e -e 1 ) ) = ( ( C +e -e 1 ) +e -e ( C +e -e 1 ) ) ) |
65 |
38 37 64
|
syl2anc |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( -e ( C +e -e 1 ) +e ( C +e -e 1 ) ) = ( ( C +e -e 1 ) +e -e ( C +e -e 1 ) ) ) |
66 |
|
xnegid |
|- ( ( C +e -e 1 ) e. RR* -> ( ( C +e -e 1 ) +e -e ( C +e -e 1 ) ) = 0 ) |
67 |
37 66
|
syl |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( ( C +e -e 1 ) +e -e ( C +e -e 1 ) ) = 0 ) |
68 |
65 67
|
eqtrd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( -e ( C +e -e 1 ) +e ( C +e -e 1 ) ) = 0 ) |
69 |
68
|
oveq2d |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A +e ( -e ( C +e -e 1 ) +e ( C +e -e 1 ) ) ) = ( A +e 0 ) ) |
70 |
32 11
|
syl |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A +e 0 ) = A ) |
71 |
63 69 70
|
3eqtrrd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> A = ( ( A +e -e ( C +e -e 1 ) ) +e ( C +e -e 1 ) ) ) |
72 |
40 54
|
resubcld |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A - ( C - 1 ) ) e. RR ) |
73 |
|
ltpnf |
|- ( ( A - ( C - 1 ) ) e. RR -> ( A - ( C - 1 ) ) < +oo ) |
74 |
72 73
|
syl |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A - ( C - 1 ) ) < +oo ) |
75 |
|
rexsub |
|- ( ( A e. RR /\ ( C +e -e 1 ) e. RR ) -> ( A +e -e ( C +e -e 1 ) ) = ( A - ( C +e -e 1 ) ) ) |
76 |
40 55 75
|
syl2anc |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A +e -e ( C +e -e 1 ) ) = ( A - ( C +e -e 1 ) ) ) |
77 |
52
|
oveq2d |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A - ( C +e -e 1 ) ) = ( A - ( C - 1 ) ) ) |
78 |
76 77
|
eqtrd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A +e -e ( C +e -e 1 ) ) = ( A - ( C - 1 ) ) ) |
79 |
|
simplr |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> B = +oo ) |
80 |
74 78 79
|
3brtr4d |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( A +e -e ( C +e -e 1 ) ) < B ) |
81 |
49
|
ltm1d |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C - 1 ) < C ) |
82 |
52 81
|
eqbrtrd |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> ( C +e -e 1 ) < C ) |
83 |
|
oveq1 |
|- ( b = ( A +e -e ( C +e -e 1 ) ) -> ( b +e c ) = ( ( A +e -e ( C +e -e 1 ) ) +e c ) ) |
84 |
83
|
eqeq2d |
|- ( b = ( A +e -e ( C +e -e 1 ) ) -> ( A = ( b +e c ) <-> A = ( ( A +e -e ( C +e -e 1 ) ) +e c ) ) ) |
85 |
|
breq1 |
|- ( b = ( A +e -e ( C +e -e 1 ) ) -> ( b < B <-> ( A +e -e ( C +e -e 1 ) ) < B ) ) |
86 |
84 85
|
3anbi12d |
|- ( b = ( A +e -e ( C +e -e 1 ) ) -> ( ( A = ( b +e c ) /\ b < B /\ c < C ) <-> ( A = ( ( A +e -e ( C +e -e 1 ) ) +e c ) /\ ( A +e -e ( C +e -e 1 ) ) < B /\ c < C ) ) ) |
87 |
|
oveq2 |
|- ( c = ( C +e -e 1 ) -> ( ( A +e -e ( C +e -e 1 ) ) +e c ) = ( ( A +e -e ( C +e -e 1 ) ) +e ( C +e -e 1 ) ) ) |
88 |
87
|
eqeq2d |
|- ( c = ( C +e -e 1 ) -> ( A = ( ( A +e -e ( C +e -e 1 ) ) +e c ) <-> A = ( ( A +e -e ( C +e -e 1 ) ) +e ( C +e -e 1 ) ) ) ) |
89 |
|
breq1 |
|- ( c = ( C +e -e 1 ) -> ( c < C <-> ( C +e -e 1 ) < C ) ) |
90 |
88 89
|
3anbi13d |
|- ( c = ( C +e -e 1 ) -> ( ( A = ( ( A +e -e ( C +e -e 1 ) ) +e c ) /\ ( A +e -e ( C +e -e 1 ) ) < B /\ c < C ) <-> ( A = ( ( A +e -e ( C +e -e 1 ) ) +e ( C +e -e 1 ) ) /\ ( A +e -e ( C +e -e 1 ) ) < B /\ ( C +e -e 1 ) < C ) ) ) |
91 |
86 90
|
rspc2ev |
|- ( ( ( A +e -e ( C +e -e 1 ) ) e. RR* /\ ( C +e -e 1 ) e. RR* /\ ( A = ( ( A +e -e ( C +e -e 1 ) ) +e ( C +e -e 1 ) ) /\ ( A +e -e ( C +e -e 1 ) ) < B /\ ( C +e -e 1 ) < C ) ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
92 |
39 37 71 80 82 91
|
syl113anc |
|- ( ( ( ph /\ B = +oo ) /\ C =/= +oo ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
93 |
31 92
|
pm2.61dane |
|- ( ( ph /\ B = +oo ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
94 |
2
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> B e. RR* ) |
95 |
34
|
a1i |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> 1 e. RR* ) |
96 |
95
|
xnegcld |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> -e 1 e. RR* ) |
97 |
94 96
|
xaddcld |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B +e -e 1 ) e. RR* ) |
98 |
7
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> A e. RR* ) |
99 |
97
|
xnegcld |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> -e ( B +e -e 1 ) e. RR* ) |
100 |
98 99
|
xaddcld |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A +e -e ( B +e -e 1 ) ) e. RR* ) |
101 |
|
xaddcom |
|- ( ( ( B +e -e 1 ) e. RR* /\ ( A +e -e ( B +e -e 1 ) ) e. RR* ) -> ( ( B +e -e 1 ) +e ( A +e -e ( B +e -e 1 ) ) ) = ( ( A +e -e ( B +e -e 1 ) ) +e ( B +e -e 1 ) ) ) |
102 |
97 100 101
|
syl2anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( ( B +e -e 1 ) +e ( A +e -e ( B +e -e 1 ) ) ) = ( ( A +e -e ( B +e -e 1 ) ) +e ( B +e -e 1 ) ) ) |
103 |
1
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> A e. RR ) |
104 |
103
|
renemnfd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> A =/= -oo ) |
105 |
|
simplr |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> B =/= +oo ) |
106 |
|
xrnepnf |
|- ( ( B e. RR* /\ B =/= +oo ) <-> ( B e. RR \/ B = -oo ) ) |
107 |
106
|
biimpi |
|- ( ( B e. RR* /\ B =/= +oo ) -> ( B e. RR \/ B = -oo ) ) |
108 |
94 105 107
|
syl2anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B e. RR \/ B = -oo ) ) |
109 |
108
|
orcomd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B = -oo \/ B e. RR ) ) |
110 |
4
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> B =/= -oo ) |
111 |
110
|
neneqd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> -. B = -oo ) |
112 |
|
pm2.53 |
|- ( ( B = -oo \/ B e. RR ) -> ( -. B = -oo -> B e. RR ) ) |
113 |
109 111 112
|
sylc |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> B e. RR ) |
114 |
|
rexsub |
|- ( ( B e. RR /\ 1 e. RR ) -> ( B +e -e 1 ) = ( B - 1 ) ) |
115 |
113 50 114
|
sylancl |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B +e -e 1 ) = ( B - 1 ) ) |
116 |
|
resubcl |
|- ( ( B e. RR /\ 1 e. RR ) -> ( B - 1 ) e. RR ) |
117 |
113 50 116
|
sylancl |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B - 1 ) e. RR ) |
118 |
115 117
|
eqeltrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B +e -e 1 ) e. RR ) |
119 |
|
rexneg |
|- ( ( B +e -e 1 ) e. RR -> -e ( B +e -e 1 ) = -u ( B +e -e 1 ) ) |
120 |
118 119
|
syl |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> -e ( B +e -e 1 ) = -u ( B +e -e 1 ) ) |
121 |
118
|
renegcld |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> -u ( B +e -e 1 ) e. RR ) |
122 |
120 121
|
eqeltrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> -e ( B +e -e 1 ) e. RR ) |
123 |
122
|
renemnfd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> -e ( B +e -e 1 ) =/= -oo ) |
124 |
118
|
renemnfd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B +e -e 1 ) =/= -oo ) |
125 |
|
xaddass |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( -e ( B +e -e 1 ) e. RR* /\ -e ( B +e -e 1 ) =/= -oo ) /\ ( ( B +e -e 1 ) e. RR* /\ ( B +e -e 1 ) =/= -oo ) ) -> ( ( A +e -e ( B +e -e 1 ) ) +e ( B +e -e 1 ) ) = ( A +e ( -e ( B +e -e 1 ) +e ( B +e -e 1 ) ) ) ) |
126 |
98 104 99 123 97 124 125
|
syl222anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( ( A +e -e ( B +e -e 1 ) ) +e ( B +e -e 1 ) ) = ( A +e ( -e ( B +e -e 1 ) +e ( B +e -e 1 ) ) ) ) |
127 |
|
xaddcom |
|- ( ( -e ( B +e -e 1 ) e. RR* /\ ( B +e -e 1 ) e. RR* ) -> ( -e ( B +e -e 1 ) +e ( B +e -e 1 ) ) = ( ( B +e -e 1 ) +e -e ( B +e -e 1 ) ) ) |
128 |
99 97 127
|
syl2anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( -e ( B +e -e 1 ) +e ( B +e -e 1 ) ) = ( ( B +e -e 1 ) +e -e ( B +e -e 1 ) ) ) |
129 |
|
xnegid |
|- ( ( B +e -e 1 ) e. RR* -> ( ( B +e -e 1 ) +e -e ( B +e -e 1 ) ) = 0 ) |
130 |
97 129
|
syl |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( ( B +e -e 1 ) +e -e ( B +e -e 1 ) ) = 0 ) |
131 |
128 130
|
eqtrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( -e ( B +e -e 1 ) +e ( B +e -e 1 ) ) = 0 ) |
132 |
131
|
oveq2d |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A +e ( -e ( B +e -e 1 ) +e ( B +e -e 1 ) ) ) = ( A +e 0 ) ) |
133 |
98 11
|
syl |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A +e 0 ) = A ) |
134 |
132 133
|
eqtrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A +e ( -e ( B +e -e 1 ) +e ( B +e -e 1 ) ) ) = A ) |
135 |
102 126 134
|
3eqtrrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> A = ( ( B +e -e 1 ) +e ( A +e -e ( B +e -e 1 ) ) ) ) |
136 |
113
|
ltm1d |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B - 1 ) < B ) |
137 |
115 136
|
eqbrtrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( B +e -e 1 ) < B ) |
138 |
103 117
|
resubcld |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A - ( B - 1 ) ) e. RR ) |
139 |
|
ltpnf |
|- ( ( A - ( B - 1 ) ) e. RR -> ( A - ( B - 1 ) ) < +oo ) |
140 |
138 139
|
syl |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A - ( B - 1 ) ) < +oo ) |
141 |
|
rexsub |
|- ( ( A e. RR /\ ( B +e -e 1 ) e. RR ) -> ( A +e -e ( B +e -e 1 ) ) = ( A - ( B +e -e 1 ) ) ) |
142 |
103 118 141
|
syl2anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A +e -e ( B +e -e 1 ) ) = ( A - ( B +e -e 1 ) ) ) |
143 |
115
|
oveq2d |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A - ( B +e -e 1 ) ) = ( A - ( B - 1 ) ) ) |
144 |
142 143
|
eqtrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A +e -e ( B +e -e 1 ) ) = ( A - ( B - 1 ) ) ) |
145 |
|
simpr |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> C = +oo ) |
146 |
140 144 145
|
3brtr4d |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> ( A +e -e ( B +e -e 1 ) ) < C ) |
147 |
|
oveq1 |
|- ( b = ( B +e -e 1 ) -> ( b +e c ) = ( ( B +e -e 1 ) +e c ) ) |
148 |
147
|
eqeq2d |
|- ( b = ( B +e -e 1 ) -> ( A = ( b +e c ) <-> A = ( ( B +e -e 1 ) +e c ) ) ) |
149 |
|
breq1 |
|- ( b = ( B +e -e 1 ) -> ( b < B <-> ( B +e -e 1 ) < B ) ) |
150 |
148 149
|
3anbi12d |
|- ( b = ( B +e -e 1 ) -> ( ( A = ( b +e c ) /\ b < B /\ c < C ) <-> ( A = ( ( B +e -e 1 ) +e c ) /\ ( B +e -e 1 ) < B /\ c < C ) ) ) |
151 |
|
oveq2 |
|- ( c = ( A +e -e ( B +e -e 1 ) ) -> ( ( B +e -e 1 ) +e c ) = ( ( B +e -e 1 ) +e ( A +e -e ( B +e -e 1 ) ) ) ) |
152 |
151
|
eqeq2d |
|- ( c = ( A +e -e ( B +e -e 1 ) ) -> ( A = ( ( B +e -e 1 ) +e c ) <-> A = ( ( B +e -e 1 ) +e ( A +e -e ( B +e -e 1 ) ) ) ) ) |
153 |
|
breq1 |
|- ( c = ( A +e -e ( B +e -e 1 ) ) -> ( c < C <-> ( A +e -e ( B +e -e 1 ) ) < C ) ) |
154 |
152 153
|
3anbi13d |
|- ( c = ( A +e -e ( B +e -e 1 ) ) -> ( ( A = ( ( B +e -e 1 ) +e c ) /\ ( B +e -e 1 ) < B /\ c < C ) <-> ( A = ( ( B +e -e 1 ) +e ( A +e -e ( B +e -e 1 ) ) ) /\ ( B +e -e 1 ) < B /\ ( A +e -e ( B +e -e 1 ) ) < C ) ) ) |
155 |
150 154
|
rspc2ev |
|- ( ( ( B +e -e 1 ) e. RR* /\ ( A +e -e ( B +e -e 1 ) ) e. RR* /\ ( A = ( ( B +e -e 1 ) +e ( A +e -e ( B +e -e 1 ) ) ) /\ ( B +e -e 1 ) < B /\ ( A +e -e ( B +e -e 1 ) ) < C ) ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
156 |
97 100 135 137 146 155
|
syl113anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C = +oo ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
157 |
1
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> A e. RR ) |
158 |
2
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> B e. RR* ) |
159 |
|
simplr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> B =/= +oo ) |
160 |
158 159 107
|
syl2anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> ( B e. RR \/ B = -oo ) ) |
161 |
160
|
orcomd |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> ( B = -oo \/ B e. RR ) ) |
162 |
4
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> B =/= -oo ) |
163 |
162
|
neneqd |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> -. B = -oo ) |
164 |
161 163 112
|
sylc |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> B e. RR ) |
165 |
3
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> C e. RR* ) |
166 |
165 43
|
sylancom |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> ( C e. RR \/ C = -oo ) ) |
167 |
166
|
orcomd |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> ( C = -oo \/ C e. RR ) ) |
168 |
5
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> C =/= -oo ) |
169 |
168
|
neneqd |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> -. C = -oo ) |
170 |
167 169 48
|
sylc |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> C e. RR ) |
171 |
6
|
ad2antrr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> A < ( B +e C ) ) |
172 |
|
rexadd |
|- ( ( B e. RR /\ C e. RR ) -> ( B +e C ) = ( B + C ) ) |
173 |
164 170 172
|
syl2anc |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> ( B +e C ) = ( B + C ) ) |
174 |
171 173
|
breqtrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> A < ( B + C ) ) |
175 |
157 164 170 174
|
lt2addrd |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> E. b e. RR E. c e. RR ( A = ( b + c ) /\ b < B /\ c < C ) ) |
176 |
|
rexadd |
|- ( ( b e. RR /\ c e. RR ) -> ( b +e c ) = ( b + c ) ) |
177 |
176
|
eqeq2d |
|- ( ( b e. RR /\ c e. RR ) -> ( A = ( b +e c ) <-> A = ( b + c ) ) ) |
178 |
177
|
3anbi1d |
|- ( ( b e. RR /\ c e. RR ) -> ( ( A = ( b +e c ) /\ b < B /\ c < C ) <-> ( A = ( b + c ) /\ b < B /\ c < C ) ) ) |
179 |
178
|
2rexbiia |
|- ( E. b e. RR E. c e. RR ( A = ( b +e c ) /\ b < B /\ c < C ) <-> E. b e. RR E. c e. RR ( A = ( b + c ) /\ b < B /\ c < C ) ) |
180 |
175 179
|
sylibr |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> E. b e. RR E. c e. RR ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
181 |
|
ressxr |
|- RR C_ RR* |
182 |
|
ssrexv |
|- ( RR C_ RR* -> ( E. c e. RR ( A = ( b +e c ) /\ b < B /\ c < C ) -> E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) ) |
183 |
181 182
|
ax-mp |
|- ( E. c e. RR ( A = ( b +e c ) /\ b < B /\ c < C ) -> E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
184 |
183
|
reximi |
|- ( E. b e. RR E. c e. RR ( A = ( b +e c ) /\ b < B /\ c < C ) -> E. b e. RR E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
185 |
|
ssrexv |
|- ( RR C_ RR* -> ( E. b e. RR E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) ) |
186 |
181 185
|
ax-mp |
|- ( E. b e. RR E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
187 |
180 184 186
|
3syl |
|- ( ( ( ph /\ B =/= +oo ) /\ C =/= +oo ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
188 |
156 187
|
pm2.61dane |
|- ( ( ph /\ B =/= +oo ) -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |
189 |
93 188
|
pm2.61dane |
|- ( ph -> E. b e. RR* E. c e. RR* ( A = ( b +e c ) /\ b < B /\ c < C ) ) |