Metamath Proof Explorer


Theorem xnegid

Description: Extended real version of negid . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xnegid
|- ( A e. RR* -> ( A +e -e A ) = 0 )

Proof

Step Hyp Ref Expression
1 elxr
 |-  ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) )
2 rexneg
 |-  ( A e. RR -> -e A = -u A )
3 2 oveq2d
 |-  ( A e. RR -> ( A +e -e A ) = ( A +e -u A ) )
4 renegcl
 |-  ( A e. RR -> -u A e. RR )
5 rexadd
 |-  ( ( A e. RR /\ -u A e. RR ) -> ( A +e -u A ) = ( A + -u A ) )
6 4 5 mpdan
 |-  ( A e. RR -> ( A +e -u A ) = ( A + -u A ) )
7 recn
 |-  ( A e. RR -> A e. CC )
8 7 negidd
 |-  ( A e. RR -> ( A + -u A ) = 0 )
9 3 6 8 3eqtrd
 |-  ( A e. RR -> ( A +e -e A ) = 0 )
10 id
 |-  ( A = +oo -> A = +oo )
11 xnegeq
 |-  ( A = +oo -> -e A = -e +oo )
12 xnegpnf
 |-  -e +oo = -oo
13 11 12 eqtrdi
 |-  ( A = +oo -> -e A = -oo )
14 10 13 oveq12d
 |-  ( A = +oo -> ( A +e -e A ) = ( +oo +e -oo ) )
15 pnfaddmnf
 |-  ( +oo +e -oo ) = 0
16 14 15 eqtrdi
 |-  ( A = +oo -> ( A +e -e A ) = 0 )
17 id
 |-  ( A = -oo -> A = -oo )
18 xnegeq
 |-  ( A = -oo -> -e A = -e -oo )
19 xnegmnf
 |-  -e -oo = +oo
20 18 19 eqtrdi
 |-  ( A = -oo -> -e A = +oo )
21 17 20 oveq12d
 |-  ( A = -oo -> ( A +e -e A ) = ( -oo +e +oo ) )
22 mnfaddpnf
 |-  ( -oo +e +oo ) = 0
23 21 22 eqtrdi
 |-  ( A = -oo -> ( A +e -e A ) = 0 )
24 9 16 23 3jaoi
 |-  ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( A +e -e A ) = 0 )
25 1 24 sylbi
 |-  ( A e. RR* -> ( A +e -e A ) = 0 )