Metamath Proof Explorer


Theorem xlt2addrd

Description: If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017)

Ref Expression
Hypotheses xlt2addrd.1 φ A
xlt2addrd.2 φ B *
xlt2addrd.3 φ C *
xlt2addrd.4 φ B −∞
xlt2addrd.5 φ C −∞
xlt2addrd.6 φ A < B + 𝑒 C
Assertion xlt2addrd φ b * c * A = b + 𝑒 c b < B c < C

Proof

Step Hyp Ref Expression
1 xlt2addrd.1 φ A
2 xlt2addrd.2 φ B *
3 xlt2addrd.3 φ C *
4 xlt2addrd.4 φ B −∞
5 xlt2addrd.5 φ C −∞
6 xlt2addrd.6 φ A < B + 𝑒 C
7 1 rexrd φ A *
8 7 ad2antrr φ B = +∞ C = +∞ A *
9 0xr 0 *
10 9 a1i φ B = +∞ C = +∞ 0 *
11 xaddid1 A * A + 𝑒 0 = A
12 11 eqcomd A * A = A + 𝑒 0
13 8 12 syl φ B = +∞ C = +∞ A = A + 𝑒 0
14 1 ad2antrr φ B = +∞ C = +∞ A
15 ltpnf A A < +∞
16 14 15 syl φ B = +∞ C = +∞ A < +∞
17 simplr φ B = +∞ C = +∞ B = +∞
18 16 17 breqtrrd φ B = +∞ C = +∞ A < B
19 0ltpnf 0 < +∞
20 simpr φ B = +∞ C = +∞ C = +∞
21 19 20 breqtrrid φ B = +∞ C = +∞ 0 < C
22 oveq1 b = A b + 𝑒 c = A + 𝑒 c
23 22 eqeq2d b = A A = b + 𝑒 c A = A + 𝑒 c
24 breq1 b = A b < B A < B
25 23 24 3anbi12d b = A A = b + 𝑒 c b < B c < C A = A + 𝑒 c A < B c < C
26 oveq2 c = 0 A + 𝑒 c = A + 𝑒 0
27 26 eqeq2d c = 0 A = A + 𝑒 c A = A + 𝑒 0
28 breq1 c = 0 c < C 0 < C
29 27 28 3anbi13d c = 0 A = A + 𝑒 c A < B c < C A = A + 𝑒 0 A < B 0 < C
30 25 29 rspc2ev A * 0 * A = A + 𝑒 0 A < B 0 < C b * c * A = b + 𝑒 c b < B c < C
31 8 10 13 18 21 30 syl113anc φ B = +∞ C = +∞ b * c * A = b + 𝑒 c b < B c < C
32 7 ad2antrr φ B = +∞ C +∞ A *
33 3 ad2antrr φ B = +∞ C +∞ C *
34 1xr 1 *
35 34 a1i φ B = +∞ C +∞ 1 *
36 35 xnegcld φ B = +∞ C +∞ 1 *
37 33 36 xaddcld φ B = +∞ C +∞ C + 𝑒 1 *
38 37 xnegcld φ B = +∞ C +∞ C + 𝑒 1 *
39 32 38 xaddcld φ B = +∞ C +∞ A + 𝑒 C + 𝑒 1 *
40 1 ad2antrr φ B = +∞ C +∞ A
41 40 renemnfd φ B = +∞ C +∞ A −∞
42 xrnepnf C * C +∞ C C = −∞
43 42 biimpi C * C +∞ C C = −∞
44 33 43 sylancom φ B = +∞ C +∞ C C = −∞
45 44 orcomd φ B = +∞ C +∞ C = −∞ C
46 5 ad2antrr φ B = +∞ C +∞ C −∞
47 46 neneqd φ B = +∞ C +∞ ¬ C = −∞
48 pm2.53 C = −∞ C ¬ C = −∞ C
49 45 47 48 sylc φ B = +∞ C +∞ C
50 1re 1
51 rexsub C 1 C + 𝑒 1 = C 1
52 49 50 51 sylancl φ B = +∞ C +∞ C + 𝑒 1 = C 1
53 resubcl C 1 C 1
54 49 50 53 sylancl φ B = +∞ C +∞ C 1
55 52 54 eqeltrd φ B = +∞ C +∞ C + 𝑒 1
56 rexneg C + 𝑒 1 C + 𝑒 1 = C + 𝑒 1
57 55 56 syl φ B = +∞ C +∞ C + 𝑒 1 = C + 𝑒 1
58 55 renegcld φ B = +∞ C +∞ C + 𝑒 1
59 57 58 eqeltrd φ B = +∞ C +∞ C + 𝑒 1
60 59 renemnfd φ B = +∞ C +∞ C + 𝑒 1 −∞
61 55 renemnfd φ B = +∞ C +∞ C + 𝑒 1 −∞
62 xaddass A * A −∞ C + 𝑒 1 * C + 𝑒 1 −∞ C + 𝑒 1 * C + 𝑒 1 −∞ A + 𝑒 C + 𝑒 1 + 𝑒 C + 𝑒 1 = A + 𝑒 C + 𝑒 1 + 𝑒 C + 𝑒 1
63 32 41 38 60 37 61 62 syl222anc φ B = +∞ C +∞ A + 𝑒 C + 𝑒 1 + 𝑒 C + 𝑒 1 = A + 𝑒 C + 𝑒 1 + 𝑒 C + 𝑒 1
64 xaddcom C + 𝑒 1 * C + 𝑒 1 * C + 𝑒 1 + 𝑒 C + 𝑒 1 = C + 𝑒 1 + 𝑒 C + 𝑒 1
65 38 37 64 syl2anc φ B = +∞ C +∞ C + 𝑒 1 + 𝑒 C + 𝑒 1 = C + 𝑒 1 + 𝑒 C + 𝑒 1
66 xnegid C + 𝑒 1 * C + 𝑒 1 + 𝑒 C + 𝑒 1 = 0
67 37 66 syl φ B = +∞ C +∞ C + 𝑒 1 + 𝑒 C + 𝑒 1 = 0
68 65 67 eqtrd φ B = +∞ C +∞ C + 𝑒 1 + 𝑒 C + 𝑒 1 = 0
69 68 oveq2d φ B = +∞ C +∞ A + 𝑒 C + 𝑒 1 + 𝑒 C + 𝑒 1 = A + 𝑒 0
70 32 11 syl φ B = +∞ C +∞ A + 𝑒 0 = A
71 63 69 70 3eqtrrd φ B = +∞ C +∞ A = A + 𝑒 C + 𝑒 1 + 𝑒 C + 𝑒 1
72 40 54 resubcld φ B = +∞ C +∞ A C 1
73 ltpnf A C 1 A C 1 < +∞
74 72 73 syl φ B = +∞ C +∞ A C 1 < +∞
75 rexsub A C + 𝑒 1 A + 𝑒 C + 𝑒 1 = A C + 𝑒 1
76 40 55 75 syl2anc φ B = +∞ C +∞ A + 𝑒 C + 𝑒 1 = A C + 𝑒 1
77 52 oveq2d φ B = +∞ C +∞ A C + 𝑒 1 = A C 1
78 76 77 eqtrd φ B = +∞ C +∞ A + 𝑒 C + 𝑒 1 = A C 1
79 simplr φ B = +∞ C +∞ B = +∞
80 74 78 79 3brtr4d φ B = +∞ C +∞ A + 𝑒 C + 𝑒 1 < B
81 49 ltm1d φ B = +∞ C +∞ C 1 < C
82 52 81 eqbrtrd φ B = +∞ C +∞ C + 𝑒 1 < C
83 oveq1 b = A + 𝑒 C + 𝑒 1 b + 𝑒 c = A + 𝑒 C + 𝑒 1 + 𝑒 c
84 83 eqeq2d b = A + 𝑒 C + 𝑒 1 A = b + 𝑒 c A = A + 𝑒 C + 𝑒 1 + 𝑒 c
85 breq1 b = A + 𝑒 C + 𝑒 1 b < B A + 𝑒 C + 𝑒 1 < B
86 84 85 3anbi12d b = A + 𝑒 C + 𝑒 1 A = b + 𝑒 c b < B c < C A = A + 𝑒 C + 𝑒 1 + 𝑒 c A + 𝑒 C + 𝑒 1 < B c < C
87 oveq2 c = C + 𝑒 1 A + 𝑒 C + 𝑒 1 + 𝑒 c = A + 𝑒 C + 𝑒 1 + 𝑒 C + 𝑒 1
88 87 eqeq2d c = C + 𝑒 1 A = A + 𝑒 C + 𝑒 1 + 𝑒 c A = A + 𝑒 C + 𝑒 1 + 𝑒 C + 𝑒 1
89 breq1 c = C + 𝑒 1 c < C C + 𝑒 1 < C
90 88 89 3anbi13d c = C + 𝑒 1 A = A + 𝑒 C + 𝑒 1 + 𝑒 c A + 𝑒 C + 𝑒 1 < B c < C A = A + 𝑒 C + 𝑒 1 + 𝑒 C + 𝑒 1 A + 𝑒 C + 𝑒 1 < B C + 𝑒 1 < C
91 86 90 rspc2ev A + 𝑒 C + 𝑒 1 * C + 𝑒 1 * A = A + 𝑒 C + 𝑒 1 + 𝑒 C + 𝑒 1 A + 𝑒 C + 𝑒 1 < B C + 𝑒 1 < C b * c * A = b + 𝑒 c b < B c < C
92 39 37 71 80 82 91 syl113anc φ B = +∞ C +∞ b * c * A = b + 𝑒 c b < B c < C
93 31 92 pm2.61dane φ B = +∞ b * c * A = b + 𝑒 c b < B c < C
94 2 ad2antrr φ B +∞ C = +∞ B *
95 34 a1i φ B +∞ C = +∞ 1 *
96 95 xnegcld φ B +∞ C = +∞ 1 *
97 94 96 xaddcld φ B +∞ C = +∞ B + 𝑒 1 *
98 7 ad2antrr φ B +∞ C = +∞ A *
99 97 xnegcld φ B +∞ C = +∞ B + 𝑒 1 *
100 98 99 xaddcld φ B +∞ C = +∞ A + 𝑒 B + 𝑒 1 *
101 xaddcom B + 𝑒 1 * A + 𝑒 B + 𝑒 1 * B + 𝑒 1 + 𝑒 A + 𝑒 B + 𝑒 1 = A + 𝑒 B + 𝑒 1 + 𝑒 B + 𝑒 1
102 97 100 101 syl2anc φ B +∞ C = +∞ B + 𝑒 1 + 𝑒 A + 𝑒 B + 𝑒 1 = A + 𝑒 B + 𝑒 1 + 𝑒 B + 𝑒 1
103 1 ad2antrr φ B +∞ C = +∞ A
104 103 renemnfd φ B +∞ C = +∞ A −∞
105 simplr φ B +∞ C = +∞ B +∞
106 xrnepnf B * B +∞ B B = −∞
107 106 biimpi B * B +∞ B B = −∞
108 94 105 107 syl2anc φ B +∞ C = +∞ B B = −∞
109 108 orcomd φ B +∞ C = +∞ B = −∞ B
110 4 ad2antrr φ B +∞ C = +∞ B −∞
111 110 neneqd φ B +∞ C = +∞ ¬ B = −∞
112 pm2.53 B = −∞ B ¬ B = −∞ B
113 109 111 112 sylc φ B +∞ C = +∞ B
114 rexsub B 1 B + 𝑒 1 = B 1
115 113 50 114 sylancl φ B +∞ C = +∞ B + 𝑒 1 = B 1
116 resubcl B 1 B 1
117 113 50 116 sylancl φ B +∞ C = +∞ B 1
118 115 117 eqeltrd φ B +∞ C = +∞ B + 𝑒 1
119 rexneg B + 𝑒 1 B + 𝑒 1 = B + 𝑒 1
120 118 119 syl φ B +∞ C = +∞ B + 𝑒 1 = B + 𝑒 1
121 118 renegcld φ B +∞ C = +∞ B + 𝑒 1
122 120 121 eqeltrd φ B +∞ C = +∞ B + 𝑒 1
123 122 renemnfd φ B +∞ C = +∞ B + 𝑒 1 −∞
124 118 renemnfd φ B +∞ C = +∞ B + 𝑒 1 −∞
125 xaddass A * A −∞ B + 𝑒 1 * B + 𝑒 1 −∞ B + 𝑒 1 * B + 𝑒 1 −∞ A + 𝑒 B + 𝑒 1 + 𝑒 B + 𝑒 1 = A + 𝑒 B + 𝑒 1 + 𝑒 B + 𝑒 1
126 98 104 99 123 97 124 125 syl222anc φ B +∞ C = +∞ A + 𝑒 B + 𝑒 1 + 𝑒 B + 𝑒 1 = A + 𝑒 B + 𝑒 1 + 𝑒 B + 𝑒 1
127 xaddcom B + 𝑒 1 * B + 𝑒 1 * B + 𝑒 1 + 𝑒 B + 𝑒 1 = B + 𝑒 1 + 𝑒 B + 𝑒 1
128 99 97 127 syl2anc φ B +∞ C = +∞ B + 𝑒 1 + 𝑒 B + 𝑒 1 = B + 𝑒 1 + 𝑒 B + 𝑒 1
129 xnegid B + 𝑒 1 * B + 𝑒 1 + 𝑒 B + 𝑒 1 = 0
130 97 129 syl φ B +∞ C = +∞ B + 𝑒 1 + 𝑒 B + 𝑒 1 = 0
131 128 130 eqtrd φ B +∞ C = +∞ B + 𝑒 1 + 𝑒 B + 𝑒 1 = 0
132 131 oveq2d φ B +∞ C = +∞ A + 𝑒 B + 𝑒 1 + 𝑒 B + 𝑒 1 = A + 𝑒 0
133 98 11 syl φ B +∞ C = +∞ A + 𝑒 0 = A
134 132 133 eqtrd φ B +∞ C = +∞ A + 𝑒 B + 𝑒 1 + 𝑒 B + 𝑒 1 = A
135 102 126 134 3eqtrrd φ B +∞ C = +∞ A = B + 𝑒 1 + 𝑒 A + 𝑒 B + 𝑒 1
136 113 ltm1d φ B +∞ C = +∞ B 1 < B
137 115 136 eqbrtrd φ B +∞ C = +∞ B + 𝑒 1 < B
138 103 117 resubcld φ B +∞ C = +∞ A B 1
139 ltpnf A B 1 A B 1 < +∞
140 138 139 syl φ B +∞ C = +∞ A B 1 < +∞
141 rexsub A B + 𝑒 1 A + 𝑒 B + 𝑒 1 = A B + 𝑒 1
142 103 118 141 syl2anc φ B +∞ C = +∞ A + 𝑒 B + 𝑒 1 = A B + 𝑒 1
143 115 oveq2d φ B +∞ C = +∞ A B + 𝑒 1 = A B 1
144 142 143 eqtrd φ B +∞ C = +∞ A + 𝑒 B + 𝑒 1 = A B 1
145 simpr φ B +∞ C = +∞ C = +∞
146 140 144 145 3brtr4d φ B +∞ C = +∞ A + 𝑒 B + 𝑒 1 < C
147 oveq1 b = B + 𝑒 1 b + 𝑒 c = B + 𝑒 1 + 𝑒 c
148 147 eqeq2d b = B + 𝑒 1 A = b + 𝑒 c A = B + 𝑒 1 + 𝑒 c
149 breq1 b = B + 𝑒 1 b < B B + 𝑒 1 < B
150 148 149 3anbi12d b = B + 𝑒 1 A = b + 𝑒 c b < B c < C A = B + 𝑒 1 + 𝑒 c B + 𝑒 1 < B c < C
151 oveq2 c = A + 𝑒 B + 𝑒 1 B + 𝑒 1 + 𝑒 c = B + 𝑒 1 + 𝑒 A + 𝑒 B + 𝑒 1
152 151 eqeq2d c = A + 𝑒 B + 𝑒 1 A = B + 𝑒 1 + 𝑒 c A = B + 𝑒 1 + 𝑒 A + 𝑒 B + 𝑒 1
153 breq1 c = A + 𝑒 B + 𝑒 1 c < C A + 𝑒 B + 𝑒 1 < C
154 152 153 3anbi13d c = A + 𝑒 B + 𝑒 1 A = B + 𝑒 1 + 𝑒 c B + 𝑒 1 < B c < C A = B + 𝑒 1 + 𝑒 A + 𝑒 B + 𝑒 1 B + 𝑒 1 < B A + 𝑒 B + 𝑒 1 < C
155 150 154 rspc2ev B + 𝑒 1 * A + 𝑒 B + 𝑒 1 * A = B + 𝑒 1 + 𝑒 A + 𝑒 B + 𝑒 1 B + 𝑒 1 < B A + 𝑒 B + 𝑒 1 < C b * c * A = b + 𝑒 c b < B c < C
156 97 100 135 137 146 155 syl113anc φ B +∞ C = +∞ b * c * A = b + 𝑒 c b < B c < C
157 1 ad2antrr φ B +∞ C +∞ A
158 2 ad2antrr φ B +∞ C +∞ B *
159 simplr φ B +∞ C +∞ B +∞
160 158 159 107 syl2anc φ B +∞ C +∞ B B = −∞
161 160 orcomd φ B +∞ C +∞ B = −∞ B
162 4 ad2antrr φ B +∞ C +∞ B −∞
163 162 neneqd φ B +∞ C +∞ ¬ B = −∞
164 161 163 112 sylc φ B +∞ C +∞ B
165 3 ad2antrr φ B +∞ C +∞ C *
166 165 43 sylancom φ B +∞ C +∞ C C = −∞
167 166 orcomd φ B +∞ C +∞ C = −∞ C
168 5 ad2antrr φ B +∞ C +∞ C −∞
169 168 neneqd φ B +∞ C +∞ ¬ C = −∞
170 167 169 48 sylc φ B +∞ C +∞ C
171 6 ad2antrr φ B +∞ C +∞ A < B + 𝑒 C
172 rexadd B C B + 𝑒 C = B + C
173 164 170 172 syl2anc φ B +∞ C +∞ B + 𝑒 C = B + C
174 171 173 breqtrd φ B +∞ C +∞ A < B + C
175 157 164 170 174 lt2addrd φ B +∞ C +∞ b c A = b + c b < B c < C
176 rexadd b c b + 𝑒 c = b + c
177 176 eqeq2d b c A = b + 𝑒 c A = b + c
178 177 3anbi1d b c A = b + 𝑒 c b < B c < C A = b + c b < B c < C
179 178 2rexbiia b c A = b + 𝑒 c b < B c < C b c A = b + c b < B c < C
180 175 179 sylibr φ B +∞ C +∞ b c A = b + 𝑒 c b < B c < C
181 ressxr *
182 ssrexv * c A = b + 𝑒 c b < B c < C c * A = b + 𝑒 c b < B c < C
183 181 182 ax-mp c A = b + 𝑒 c b < B c < C c * A = b + 𝑒 c b < B c < C
184 183 reximi b c A = b + 𝑒 c b < B c < C b c * A = b + 𝑒 c b < B c < C
185 ssrexv * b c * A = b + 𝑒 c b < B c < C b * c * A = b + 𝑒 c b < B c < C
186 181 185 ax-mp b c * A = b + 𝑒 c b < B c < C b * c * A = b + 𝑒 c b < B c < C
187 180 184 186 3syl φ B +∞ C +∞ b * c * A = b + 𝑒 c b < B c < C
188 156 187 pm2.61dane φ B +∞ b * c * A = b + 𝑒 c b < B c < C
189 93 188 pm2.61dane φ b * c * A = b + 𝑒 c b < B c < C