Metamath Proof Explorer


Theorem lt2addrd

Description: If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017)

Ref Expression
Hypotheses lt2addrd.1 φ A
lt2addrd.2 φ B
lt2addrd.3 φ C
lt2addrd.4 φ A < B + C
Assertion lt2addrd φ b c A = b + c b < B c < C

Proof

Step Hyp Ref Expression
1 lt2addrd.1 φ A
2 lt2addrd.2 φ B
3 lt2addrd.3 φ C
4 lt2addrd.4 φ A < B + C
5 2 3 readdcld φ B + C
6 5 1 resubcld φ B + C - A
7 6 rehalfcld φ B + C - A 2
8 2 7 resubcld φ B B + C - A 2
9 3 7 resubcld φ C B + C - A 2
10 3 recnd φ C
11 2 recnd φ B
12 11 10 addcld φ B + C
13 1 recnd φ A
14 12 13 subcld φ B + C - A
15 14 halfcld φ B + C - A 2
16 10 15 15 subsub4d φ C - B + C - A 2 - B + C - A 2 = C B + C - A 2 + B + C - A 2
17 16 oveq2d φ B + C B + C - A 2 - B + C - A 2 = B + C - B + C - A 2 + B + C - A 2
18 10 15 subcld φ C B + C - A 2
19 11 15 18 subadd23d φ B B + C - A 2 + C - B + C - A 2 = B + C B + C - A 2 - B + C - A 2
20 14 2halvesd φ B + C - A 2 + B + C - A 2 = B + C - A
21 20 14 eqeltrd φ B + C - A 2 + B + C - A 2
22 11 10 21 addsubassd φ B + C - B + C - A 2 + B + C - A 2 = B + C - B + C - A 2 + B + C - A 2
23 17 19 22 3eqtr4d φ B B + C - A 2 + C - B + C - A 2 = B + C - B + C - A 2 + B + C - A 2
24 20 oveq2d φ B + C - B + C - A 2 + B + C - A 2 = B + C - B + C - A
25 12 13 nncand φ B + C - B + C - A = A
26 23 24 25 3eqtrrd φ A = B B + C - A 2 + C - B + C - A 2
27 difrp A B + C A < B + C B + C - A +
28 1 5 27 syl2anc φ A < B + C B + C - A +
29 4 28 mpbid φ B + C - A +
30 29 rphalfcld φ B + C - A 2 +
31 2 30 ltsubrpd φ B B + C - A 2 < B
32 3 30 ltsubrpd φ C B + C - A 2 < C
33 oveq1 b = B B + C - A 2 b + c = B - B + C - A 2 + c
34 33 eqeq2d b = B B + C - A 2 A = b + c A = B - B + C - A 2 + c
35 breq1 b = B B + C - A 2 b < B B B + C - A 2 < B
36 34 35 3anbi12d b = B B + C - A 2 A = b + c b < B c < C A = B - B + C - A 2 + c B B + C - A 2 < B c < C
37 oveq2 c = C B + C - A 2 B - B + C - A 2 + c = B B + C - A 2 + C - B + C - A 2
38 37 eqeq2d c = C B + C - A 2 A = B - B + C - A 2 + c A = B B + C - A 2 + C - B + C - A 2
39 breq1 c = C B + C - A 2 c < C C B + C - A 2 < C
40 38 39 3anbi13d c = C B + C - A 2 A = B - B + C - A 2 + c B B + C - A 2 < B c < C A = B B + C - A 2 + C - B + C - A 2 B B + C - A 2 < B C B + C - A 2 < C
41 36 40 rspc2ev B B + C - A 2 C B + C - A 2 A = B B + C - A 2 + C - B + C - A 2 B B + C - A 2 < B C B + C - A 2 < C b c A = b + c b < B c < C
42 8 9 26 31 32 41 syl113anc φ b c A = b + c b < B c < C