| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lt2addrd.1 |
|
| 2 |
|
lt2addrd.2 |
|
| 3 |
|
lt2addrd.3 |
|
| 4 |
|
lt2addrd.4 |
|
| 5 |
2 3
|
readdcld |
|
| 6 |
5 1
|
resubcld |
|
| 7 |
6
|
rehalfcld |
|
| 8 |
2 7
|
resubcld |
|
| 9 |
3 7
|
resubcld |
|
| 10 |
3
|
recnd |
|
| 11 |
2
|
recnd |
|
| 12 |
11 10
|
addcld |
|
| 13 |
1
|
recnd |
|
| 14 |
12 13
|
subcld |
|
| 15 |
14
|
halfcld |
|
| 16 |
10 15 15
|
subsub4d |
|
| 17 |
16
|
oveq2d |
|
| 18 |
10 15
|
subcld |
|
| 19 |
11 15 18
|
subadd23d |
|
| 20 |
14
|
2halvesd |
|
| 21 |
20 14
|
eqeltrd |
|
| 22 |
11 10 21
|
addsubassd |
|
| 23 |
17 19 22
|
3eqtr4d |
|
| 24 |
20
|
oveq2d |
|
| 25 |
12 13
|
nncand |
|
| 26 |
23 24 25
|
3eqtrrd |
|
| 27 |
|
difrp |
|
| 28 |
1 5 27
|
syl2anc |
|
| 29 |
4 28
|
mpbid |
|
| 30 |
29
|
rphalfcld |
|
| 31 |
2 30
|
ltsubrpd |
|
| 32 |
3 30
|
ltsubrpd |
|
| 33 |
|
oveq1 |
|
| 34 |
33
|
eqeq2d |
|
| 35 |
|
breq1 |
|
| 36 |
34 35
|
3anbi12d |
|
| 37 |
|
oveq2 |
|
| 38 |
37
|
eqeq2d |
|
| 39 |
|
breq1 |
|
| 40 |
38 39
|
3anbi13d |
|
| 41 |
36 40
|
rspc2ev |
|
| 42 |
8 9 26 31 32 41
|
syl113anc |
|