Metamath Proof Explorer


Theorem supxrnemnf

Description: The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017)

Ref Expression
Assertion supxrnemnf
|- ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> sup ( A , RR* , < ) =/= -oo )

Proof

Step Hyp Ref Expression
1 mnfxr
 |-  -oo e. RR*
2 1 a1i
 |-  ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> -oo e. RR* )
3 supxrcl
 |-  ( A C_ RR* -> sup ( A , RR* , < ) e. RR* )
4 3 3ad2ant1
 |-  ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> sup ( A , RR* , < ) e. RR* )
5 simp1
 |-  ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> A C_ RR* )
6 5 1 jctir
 |-  ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> ( A C_ RR* /\ -oo e. RR* ) )
7 simpl
 |-  ( ( A C_ RR* /\ -. -oo e. A ) -> A C_ RR* )
8 7 sselda
 |-  ( ( ( A C_ RR* /\ -. -oo e. A ) /\ x e. A ) -> x e. RR* )
9 simpr
 |-  ( ( ( A C_ RR* /\ -. -oo e. A ) /\ x e. A ) -> x e. A )
10 simplr
 |-  ( ( ( A C_ RR* /\ -. -oo e. A ) /\ x e. A ) -> -. -oo e. A )
11 nelneq
 |-  ( ( x e. A /\ -. -oo e. A ) -> -. x = -oo )
12 9 10 11 syl2anc
 |-  ( ( ( A C_ RR* /\ -. -oo e. A ) /\ x e. A ) -> -. x = -oo )
13 ngtmnft
 |-  ( x e. RR* -> ( x = -oo <-> -. -oo < x ) )
14 13 biimprd
 |-  ( x e. RR* -> ( -. -oo < x -> x = -oo ) )
15 14 con1d
 |-  ( x e. RR* -> ( -. x = -oo -> -oo < x ) )
16 8 12 15 sylc
 |-  ( ( ( A C_ RR* /\ -. -oo e. A ) /\ x e. A ) -> -oo < x )
17 16 reximdva0
 |-  ( ( ( A C_ RR* /\ -. -oo e. A ) /\ A =/= (/) ) -> E. x e. A -oo < x )
18 17 3impa
 |-  ( ( A C_ RR* /\ -. -oo e. A /\ A =/= (/) ) -> E. x e. A -oo < x )
19 18 3com23
 |-  ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> E. x e. A -oo < x )
20 supxrlub
 |-  ( ( A C_ RR* /\ -oo e. RR* ) -> ( -oo < sup ( A , RR* , < ) <-> E. x e. A -oo < x ) )
21 20 biimprd
 |-  ( ( A C_ RR* /\ -oo e. RR* ) -> ( E. x e. A -oo < x -> -oo < sup ( A , RR* , < ) ) )
22 6 19 21 sylc
 |-  ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> -oo < sup ( A , RR* , < ) )
23 xrltne
 |-  ( ( -oo e. RR* /\ sup ( A , RR* , < ) e. RR* /\ -oo < sup ( A , RR* , < ) ) -> sup ( A , RR* , < ) =/= -oo )
24 2 4 22 23 syl3anc
 |-  ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> sup ( A , RR* , < ) =/= -oo )