Step |
Hyp |
Ref |
Expression |
1 |
|
mnfxr |
|- -oo e. RR* |
2 |
1
|
a1i |
|- ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> -oo e. RR* ) |
3 |
|
supxrcl |
|- ( A C_ RR* -> sup ( A , RR* , < ) e. RR* ) |
4 |
3
|
3ad2ant1 |
|- ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> sup ( A , RR* , < ) e. RR* ) |
5 |
|
simp1 |
|- ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> A C_ RR* ) |
6 |
5 1
|
jctir |
|- ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> ( A C_ RR* /\ -oo e. RR* ) ) |
7 |
|
simpl |
|- ( ( A C_ RR* /\ -. -oo e. A ) -> A C_ RR* ) |
8 |
7
|
sselda |
|- ( ( ( A C_ RR* /\ -. -oo e. A ) /\ x e. A ) -> x e. RR* ) |
9 |
|
simpr |
|- ( ( ( A C_ RR* /\ -. -oo e. A ) /\ x e. A ) -> x e. A ) |
10 |
|
simplr |
|- ( ( ( A C_ RR* /\ -. -oo e. A ) /\ x e. A ) -> -. -oo e. A ) |
11 |
|
nelneq |
|- ( ( x e. A /\ -. -oo e. A ) -> -. x = -oo ) |
12 |
9 10 11
|
syl2anc |
|- ( ( ( A C_ RR* /\ -. -oo e. A ) /\ x e. A ) -> -. x = -oo ) |
13 |
|
ngtmnft |
|- ( x e. RR* -> ( x = -oo <-> -. -oo < x ) ) |
14 |
13
|
biimprd |
|- ( x e. RR* -> ( -. -oo < x -> x = -oo ) ) |
15 |
14
|
con1d |
|- ( x e. RR* -> ( -. x = -oo -> -oo < x ) ) |
16 |
8 12 15
|
sylc |
|- ( ( ( A C_ RR* /\ -. -oo e. A ) /\ x e. A ) -> -oo < x ) |
17 |
16
|
reximdva0 |
|- ( ( ( A C_ RR* /\ -. -oo e. A ) /\ A =/= (/) ) -> E. x e. A -oo < x ) |
18 |
17
|
3impa |
|- ( ( A C_ RR* /\ -. -oo e. A /\ A =/= (/) ) -> E. x e. A -oo < x ) |
19 |
18
|
3com23 |
|- ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> E. x e. A -oo < x ) |
20 |
|
supxrlub |
|- ( ( A C_ RR* /\ -oo e. RR* ) -> ( -oo < sup ( A , RR* , < ) <-> E. x e. A -oo < x ) ) |
21 |
20
|
biimprd |
|- ( ( A C_ RR* /\ -oo e. RR* ) -> ( E. x e. A -oo < x -> -oo < sup ( A , RR* , < ) ) ) |
22 |
6 19 21
|
sylc |
|- ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> -oo < sup ( A , RR* , < ) ) |
23 |
|
xrltne |
|- ( ( -oo e. RR* /\ sup ( A , RR* , < ) e. RR* /\ -oo < sup ( A , RR* , < ) ) -> sup ( A , RR* , < ) =/= -oo ) |
24 |
2 4 22 23
|
syl3anc |
|- ( ( A C_ RR* /\ A =/= (/) /\ -. -oo e. A ) -> sup ( A , RR* , < ) =/= -oo ) |