Metamath Proof Explorer


Theorem supxrnemnf

Description: The supremum of a nonempty set of extended reals which does not contain minus infinity is not minus infinity. (Contributed by Thierry Arnoux, 21-Mar-2017)

Ref Expression
Assertion supxrnemnf A * A ¬ −∞ A sup A * < −∞

Proof

Step Hyp Ref Expression
1 mnfxr −∞ *
2 1 a1i A * A ¬ −∞ A −∞ *
3 supxrcl A * sup A * < *
4 3 3ad2ant1 A * A ¬ −∞ A sup A * < *
5 simp1 A * A ¬ −∞ A A *
6 5 1 jctir A * A ¬ −∞ A A * −∞ *
7 simpl A * ¬ −∞ A A *
8 7 sselda A * ¬ −∞ A x A x *
9 simpr A * ¬ −∞ A x A x A
10 simplr A * ¬ −∞ A x A ¬ −∞ A
11 nelneq x A ¬ −∞ A ¬ x = −∞
12 9 10 11 syl2anc A * ¬ −∞ A x A ¬ x = −∞
13 ngtmnft x * x = −∞ ¬ −∞ < x
14 13 biimprd x * ¬ −∞ < x x = −∞
15 14 con1d x * ¬ x = −∞ −∞ < x
16 8 12 15 sylc A * ¬ −∞ A x A −∞ < x
17 16 reximdva0 A * ¬ −∞ A A x A −∞ < x
18 17 3impa A * ¬ −∞ A A x A −∞ < x
19 18 3com23 A * A ¬ −∞ A x A −∞ < x
20 supxrlub A * −∞ * −∞ < sup A * < x A −∞ < x
21 20 biimprd A * −∞ * x A −∞ < x −∞ < sup A * <
22 6 19 21 sylc A * A ¬ −∞ A −∞ < sup A * <
23 xrltne −∞ * sup A * < * −∞ < sup A * < sup A * < −∞
24 2 4 22 23 syl3anc A * A ¬ −∞ A sup A * < −∞