| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfcv |
|- F/_ x z |
| 2 |
|
nfcv |
|- F/_ x B |
| 3 |
|
nfcsb1v |
|- F/_ x [_ z / x ]_ C |
| 4 |
3
|
nfeq1 |
|- F/ x [_ z / x ]_ C = y |
| 5 |
|
csbeq1a |
|- ( x = z -> C = [_ z / x ]_ C ) |
| 6 |
5
|
eqeq1d |
|- ( x = z -> ( C = y <-> [_ z / x ]_ C = y ) ) |
| 7 |
1 2 4 6
|
elrabf |
|- ( z e. { x e. B | C = y } <-> ( z e. B /\ [_ z / x ]_ C = y ) ) |
| 8 |
|
simprr |
|- ( ( y e. A /\ ( z e. B /\ [_ z / x ]_ C = y ) ) -> [_ z / x ]_ C = y ) |
| 9 |
7 8
|
sylan2b |
|- ( ( y e. A /\ z e. { x e. B | C = y } ) -> [_ z / x ]_ C = y ) |
| 10 |
9
|
rgen2 |
|- A. y e. A A. z e. { x e. B | C = y } [_ z / x ]_ C = y |
| 11 |
|
invdisj |
|- ( A. y e. A A. z e. { x e. B | C = y } [_ z / x ]_ C = y -> Disj_ y e. A { x e. B | C = y } ) |
| 12 |
10 11
|
ax-mp |
|- Disj_ y e. A { x e. B | C = y } |