| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
| 2 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
| 3 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐶 |
| 4 |
3
|
nfeq1 |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 |
| 5 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑧 → 𝐶 = ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) |
| 6 |
5
|
eqeq1d |
⊢ ( 𝑥 = 𝑧 → ( 𝐶 = 𝑦 ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 ) ) |
| 7 |
1 2 4 6
|
elrabf |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦 } ↔ ( 𝑧 ∈ 𝐵 ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 ) ) |
| 8 |
|
simprr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ 𝐵 ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 ) ) → ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 ) |
| 9 |
7 8
|
sylan2b |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦 } ) → ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 ) |
| 10 |
9
|
rgen2 |
⊢ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦 } ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 |
| 11 |
|
invdisj |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ { 𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦 } ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝑦 → Disj 𝑦 ∈ 𝐴 { 𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦 } ) |
| 12 |
10 11
|
ax-mp |
⊢ Disj 𝑦 ∈ 𝐴 { 𝑥 ∈ 𝐵 ∣ 𝐶 = 𝑦 } |