| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
| 2 |
1
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> A e. RR* ) |
| 3 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
| 4 |
3
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> B e. RR* ) |
| 5 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
| 6 |
5
|
rehalfcld |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) / 2 ) e. RR ) |
| 7 |
6
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A + B ) / 2 ) e. RR ) |
| 8 |
|
avglt1 |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A < ( ( A + B ) / 2 ) ) ) |
| 9 |
8
|
biimp3a |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> A < ( ( A + B ) / 2 ) ) |
| 10 |
|
avglt2 |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) |
| 11 |
10
|
biimp3a |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A + B ) / 2 ) < B ) |
| 12 |
2 4 7 9 11
|
eliood |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( ( A + B ) / 2 ) e. ( A (,) B ) ) |