| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ran ( x e. RR* |-> ( x (,] +oo ) ) = ran ( x e. RR* |-> ( x (,] +oo ) ) |
| 2 |
|
eqid |
|- ran ( x e. RR* |-> ( -oo [,) x ) ) = ran ( x e. RR* |-> ( -oo [,) x ) ) |
| 3 |
|
eqid |
|- ran (,) = ran (,) |
| 4 |
1 2 3
|
leordtval |
|- ( ordTop ` <_ ) = ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) |
| 5 |
|
letop |
|- ( ordTop ` <_ ) e. Top |
| 6 |
4 5
|
eqeltrri |
|- ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) e. Top |
| 7 |
|
tgclb |
|- ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) e. TopBases <-> ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) e. Top ) |
| 8 |
6 7
|
mpbir |
|- ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) e. TopBases |
| 9 |
|
bastg |
|- ( ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) e. TopBases -> ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) C_ ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) ) |
| 10 |
8 9
|
ax-mp |
|- ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) C_ ( topGen ` ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) ) |
| 11 |
10 4
|
sseqtrri |
|- ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) C_ ( ordTop ` <_ ) |
| 12 |
|
ssun2 |
|- ran (,) C_ ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) |
| 13 |
|
ioorebas |
|- ( A (,) B ) e. ran (,) |
| 14 |
12 13
|
sselii |
|- ( A (,) B ) e. ( ( ran ( x e. RR* |-> ( x (,] +oo ) ) u. ran ( x e. RR* |-> ( -oo [,) x ) ) ) u. ran (,) ) |
| 15 |
11 14
|
sselii |
|- ( A (,) B ) e. ( ordTop ` <_ ) |