Metamath Proof Explorer


Theorem ioovonmbl

Description: Any n-dimensional open interval is Lebesgue measurable. This is the first statement in Proposition 115G (c) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses ioovonmbl.x
|- ( ph -> X e. Fin )
ioovonmbl.s
|- S = dom ( voln ` X )
ioovonmbl.a
|- ( ph -> A : X --> RR* )
ioovonmbl.b
|- ( ph -> B : X --> RR* )
Assertion ioovonmbl
|- ( ph -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. S )

Proof

Step Hyp Ref Expression
1 ioovonmbl.x
 |-  ( ph -> X e. Fin )
2 ioovonmbl.s
 |-  S = dom ( voln ` X )
3 ioovonmbl.a
 |-  ( ph -> A : X --> RR* )
4 ioovonmbl.b
 |-  ( ph -> B : X --> RR* )
5 1 3 4 ioorrnopnxr
 |-  ( ph -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) )
6 1 2 5 opnvonmbl
 |-  ( ph -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. S )