Description: Any n-dimensional open interval is Lebesgue measurable. This is the first statement in Proposition 115G (c) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ioovonmbl.x | |- ( ph -> X e. Fin ) |
|
ioovonmbl.s | |- S = dom ( voln ` X ) |
||
ioovonmbl.a | |- ( ph -> A : X --> RR* ) |
||
ioovonmbl.b | |- ( ph -> B : X --> RR* ) |
||
Assertion | ioovonmbl | |- ( ph -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioovonmbl.x | |- ( ph -> X e. Fin ) |
|
2 | ioovonmbl.s | |- S = dom ( voln ` X ) |
|
3 | ioovonmbl.a | |- ( ph -> A : X --> RR* ) |
|
4 | ioovonmbl.b | |- ( ph -> B : X --> RR* ) |
|
5 | 1 3 4 | ioorrnopnxr | |- ( ph -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. ( TopOpen ` ( RR^ ` X ) ) ) |
6 | 1 2 5 | opnvonmbl | |- ( ph -> X_ i e. X ( ( A ` i ) (,) ( B ` i ) ) e. S ) |