Step |
Hyp |
Ref |
Expression |
1 |
|
iccvonmbllem.x |
|- ( ph -> X e. Fin ) |
2 |
|
iccvonmbllem.s |
|- S = dom ( voln ` X ) |
3 |
|
iccvonmbllem.a |
|- ( ph -> A : X --> RR ) |
4 |
|
iccvonmbllem.b |
|- ( ph -> B : X --> RR ) |
5 |
|
iccvonmbllem.c |
|- C = ( n e. NN |-> ( i e. X |-> ( ( A ` i ) - ( 1 / n ) ) ) ) |
6 |
|
iccvonmbllem.d |
|- D = ( n e. NN |-> ( i e. X |-> ( ( B ` i ) + ( 1 / n ) ) ) ) |
7 |
5
|
a1i |
|- ( ph -> C = ( n e. NN |-> ( i e. X |-> ( ( A ` i ) - ( 1 / n ) ) ) ) ) |
8 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. Fin ) |
9 |
8
|
mptexd |
|- ( ( ph /\ n e. NN ) -> ( i e. X |-> ( ( A ` i ) - ( 1 / n ) ) ) e. _V ) |
10 |
7 9
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) = ( i e. X |-> ( ( A ` i ) - ( 1 / n ) ) ) ) |
11 |
3
|
ffvelrnda |
|- ( ( ph /\ i e. X ) -> ( A ` i ) e. RR ) |
12 |
11
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. X ) -> ( A ` i ) e. RR ) |
13 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
14 |
13
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. X ) -> ( 1 / n ) e. RR ) |
15 |
12 14
|
resubcld |
|- ( ( ( ph /\ n e. NN ) /\ i e. X ) -> ( ( A ` i ) - ( 1 / n ) ) e. RR ) |
16 |
10 15
|
fvmpt2d |
|- ( ( ( ph /\ n e. NN ) /\ i e. X ) -> ( ( C ` n ) ` i ) = ( ( A ` i ) - ( 1 / n ) ) ) |
17 |
16
|
an32s |
|- ( ( ( ph /\ i e. X ) /\ n e. NN ) -> ( ( C ` n ) ` i ) = ( ( A ` i ) - ( 1 / n ) ) ) |
18 |
6
|
a1i |
|- ( ph -> D = ( n e. NN |-> ( i e. X |-> ( ( B ` i ) + ( 1 / n ) ) ) ) ) |
19 |
8
|
mptexd |
|- ( ( ph /\ n e. NN ) -> ( i e. X |-> ( ( B ` i ) + ( 1 / n ) ) ) e. _V ) |
20 |
18 19
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = ( i e. X |-> ( ( B ` i ) + ( 1 / n ) ) ) ) |
21 |
4
|
ffvelrnda |
|- ( ( ph /\ i e. X ) -> ( B ` i ) e. RR ) |
22 |
21
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. X ) -> ( B ` i ) e. RR ) |
23 |
22 14
|
readdcld |
|- ( ( ( ph /\ n e. NN ) /\ i e. X ) -> ( ( B ` i ) + ( 1 / n ) ) e. RR ) |
24 |
20 23
|
fvmpt2d |
|- ( ( ( ph /\ n e. NN ) /\ i e. X ) -> ( ( D ` n ) ` i ) = ( ( B ` i ) + ( 1 / n ) ) ) |
25 |
24
|
an32s |
|- ( ( ( ph /\ i e. X ) /\ n e. NN ) -> ( ( D ` n ) ` i ) = ( ( B ` i ) + ( 1 / n ) ) ) |
26 |
17 25
|
oveq12d |
|- ( ( ( ph /\ i e. X ) /\ n e. NN ) -> ( ( ( C ` n ) ` i ) (,) ( ( D ` n ) ` i ) ) = ( ( ( A ` i ) - ( 1 / n ) ) (,) ( ( B ` i ) + ( 1 / n ) ) ) ) |
27 |
26
|
iineq2dv |
|- ( ( ph /\ i e. X ) -> |^|_ n e. NN ( ( ( C ` n ) ` i ) (,) ( ( D ` n ) ` i ) ) = |^|_ n e. NN ( ( ( A ` i ) - ( 1 / n ) ) (,) ( ( B ` i ) + ( 1 / n ) ) ) ) |
28 |
11 21
|
iooiinicc |
|- ( ( ph /\ i e. X ) -> |^|_ n e. NN ( ( ( A ` i ) - ( 1 / n ) ) (,) ( ( B ` i ) + ( 1 / n ) ) ) = ( ( A ` i ) [,] ( B ` i ) ) ) |
29 |
27 28
|
eqtrd |
|- ( ( ph /\ i e. X ) -> |^|_ n e. NN ( ( ( C ` n ) ` i ) (,) ( ( D ` n ) ` i ) ) = ( ( A ` i ) [,] ( B ` i ) ) ) |
30 |
29
|
ixpeq2dva |
|- ( ph -> X_ i e. X |^|_ n e. NN ( ( ( C ` n ) ` i ) (,) ( ( D ` n ) ` i ) ) = X_ i e. X ( ( A ` i ) [,] ( B ` i ) ) ) |
31 |
30
|
eqcomd |
|- ( ph -> X_ i e. X ( ( A ` i ) [,] ( B ` i ) ) = X_ i e. X |^|_ n e. NN ( ( ( C ` n ) ` i ) (,) ( ( D ` n ) ` i ) ) ) |
32 |
|
eqidd |
|- ( ph -> X_ i e. X ( ( A ` i ) [,] ( B ` i ) ) = X_ i e. X ( ( A ` i ) [,] ( B ` i ) ) ) |
33 |
|
nnn0 |
|- NN =/= (/) |
34 |
33
|
a1i |
|- ( ph -> NN =/= (/) ) |
35 |
|
ixpiin |
|- ( NN =/= (/) -> X_ i e. X |^|_ n e. NN ( ( ( C ` n ) ` i ) (,) ( ( D ` n ) ` i ) ) = |^|_ n e. NN X_ i e. X ( ( ( C ` n ) ` i ) (,) ( ( D ` n ) ` i ) ) ) |
36 |
34 35
|
syl |
|- ( ph -> X_ i e. X |^|_ n e. NN ( ( ( C ` n ) ` i ) (,) ( ( D ` n ) ` i ) ) = |^|_ n e. NN X_ i e. X ( ( ( C ` n ) ` i ) (,) ( ( D ` n ) ` i ) ) ) |
37 |
31 32 36
|
3eqtr3d |
|- ( ph -> X_ i e. X ( ( A ` i ) [,] ( B ` i ) ) = |^|_ n e. NN X_ i e. X ( ( ( C ` n ) ` i ) (,) ( ( D ` n ) ` i ) ) ) |
38 |
1 2
|
dmovnsal |
|- ( ph -> S e. SAlg ) |
39 |
|
nnct |
|- NN ~<_ _om |
40 |
39
|
a1i |
|- ( ph -> NN ~<_ _om ) |
41 |
15
|
fmpttd |
|- ( ( ph /\ n e. NN ) -> ( i e. X |-> ( ( A ` i ) - ( 1 / n ) ) ) : X --> RR ) |
42 |
|
ressxr |
|- RR C_ RR* |
43 |
42
|
a1i |
|- ( ( ph /\ n e. NN ) -> RR C_ RR* ) |
44 |
41 43
|
fssd |
|- ( ( ph /\ n e. NN ) -> ( i e. X |-> ( ( A ` i ) - ( 1 / n ) ) ) : X --> RR* ) |
45 |
10
|
feq1d |
|- ( ( ph /\ n e. NN ) -> ( ( C ` n ) : X --> RR* <-> ( i e. X |-> ( ( A ` i ) - ( 1 / n ) ) ) : X --> RR* ) ) |
46 |
44 45
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) : X --> RR* ) |
47 |
23
|
fmpttd |
|- ( ( ph /\ n e. NN ) -> ( i e. X |-> ( ( B ` i ) + ( 1 / n ) ) ) : X --> RR ) |
48 |
47 43
|
fssd |
|- ( ( ph /\ n e. NN ) -> ( i e. X |-> ( ( B ` i ) + ( 1 / n ) ) ) : X --> RR* ) |
49 |
20
|
feq1d |
|- ( ( ph /\ n e. NN ) -> ( ( D ` n ) : X --> RR* <-> ( i e. X |-> ( ( B ` i ) + ( 1 / n ) ) ) : X --> RR* ) ) |
50 |
48 49
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) : X --> RR* ) |
51 |
8 2 46 50
|
ioovonmbl |
|- ( ( ph /\ n e. NN ) -> X_ i e. X ( ( ( C ` n ) ` i ) (,) ( ( D ` n ) ` i ) ) e. S ) |
52 |
38 40 34 51
|
saliincl |
|- ( ph -> |^|_ n e. NN X_ i e. X ( ( ( C ` n ) ` i ) (,) ( ( D ` n ) ` i ) ) e. S ) |
53 |
37 52
|
eqeltrd |
|- ( ph -> X_ i e. X ( ( A ` i ) [,] ( B ` i ) ) e. S ) |