Metamath Proof Explorer


Theorem iccvonmbl

Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iccvonmbl.x
|- ( ph -> X e. Fin )
iccvonmbl.s
|- S = dom ( voln ` X )
iccvonmbl.a
|- ( ph -> A : X --> RR )
iccvonmbl.b
|- ( ph -> B : X --> RR )
Assertion iccvonmbl
|- ( ph -> X_ i e. X ( ( A ` i ) [,] ( B ` i ) ) e. S )

Proof

Step Hyp Ref Expression
1 iccvonmbl.x
 |-  ( ph -> X e. Fin )
2 iccvonmbl.s
 |-  S = dom ( voln ` X )
3 iccvonmbl.a
 |-  ( ph -> A : X --> RR )
4 iccvonmbl.b
 |-  ( ph -> B : X --> RR )
5 fveq2
 |-  ( j = i -> ( A ` j ) = ( A ` i ) )
6 5 oveq1d
 |-  ( j = i -> ( ( A ` j ) - ( 1 / n ) ) = ( ( A ` i ) - ( 1 / n ) ) )
7 6 cbvmptv
 |-  ( j e. X |-> ( ( A ` j ) - ( 1 / n ) ) ) = ( i e. X |-> ( ( A ` i ) - ( 1 / n ) ) )
8 7 mpteq2i
 |-  ( n e. NN |-> ( j e. X |-> ( ( A ` j ) - ( 1 / n ) ) ) ) = ( n e. NN |-> ( i e. X |-> ( ( A ` i ) - ( 1 / n ) ) ) )
9 fveq2
 |-  ( j = i -> ( B ` j ) = ( B ` i ) )
10 9 oveq1d
 |-  ( j = i -> ( ( B ` j ) + ( 1 / n ) ) = ( ( B ` i ) + ( 1 / n ) ) )
11 10 cbvmptv
 |-  ( j e. X |-> ( ( B ` j ) + ( 1 / n ) ) ) = ( i e. X |-> ( ( B ` i ) + ( 1 / n ) ) )
12 11 mpteq2i
 |-  ( n e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / n ) ) ) ) = ( n e. NN |-> ( i e. X |-> ( ( B ` i ) + ( 1 / n ) ) ) )
13 1 2 3 4 8 12 iccvonmbllem
 |-  ( ph -> X_ i e. X ( ( A ` i ) [,] ( B ` i ) ) e. S )