Step |
Hyp |
Ref |
Expression |
1 |
|
iccvonmbl.x |
|- ( ph -> X e. Fin ) |
2 |
|
iccvonmbl.s |
|- S = dom ( voln ` X ) |
3 |
|
iccvonmbl.a |
|- ( ph -> A : X --> RR ) |
4 |
|
iccvonmbl.b |
|- ( ph -> B : X --> RR ) |
5 |
|
fveq2 |
|- ( j = i -> ( A ` j ) = ( A ` i ) ) |
6 |
5
|
oveq1d |
|- ( j = i -> ( ( A ` j ) - ( 1 / n ) ) = ( ( A ` i ) - ( 1 / n ) ) ) |
7 |
6
|
cbvmptv |
|- ( j e. X |-> ( ( A ` j ) - ( 1 / n ) ) ) = ( i e. X |-> ( ( A ` i ) - ( 1 / n ) ) ) |
8 |
7
|
mpteq2i |
|- ( n e. NN |-> ( j e. X |-> ( ( A ` j ) - ( 1 / n ) ) ) ) = ( n e. NN |-> ( i e. X |-> ( ( A ` i ) - ( 1 / n ) ) ) ) |
9 |
|
fveq2 |
|- ( j = i -> ( B ` j ) = ( B ` i ) ) |
10 |
9
|
oveq1d |
|- ( j = i -> ( ( B ` j ) + ( 1 / n ) ) = ( ( B ` i ) + ( 1 / n ) ) ) |
11 |
10
|
cbvmptv |
|- ( j e. X |-> ( ( B ` j ) + ( 1 / n ) ) ) = ( i e. X |-> ( ( B ` i ) + ( 1 / n ) ) ) |
12 |
11
|
mpteq2i |
|- ( n e. NN |-> ( j e. X |-> ( ( B ` j ) + ( 1 / n ) ) ) ) = ( n e. NN |-> ( i e. X |-> ( ( B ` i ) + ( 1 / n ) ) ) ) |
13 |
1 2 3 4 8 12
|
iccvonmbllem |
|- ( ph -> X_ i e. X ( ( A ` i ) [,] ( B ` i ) ) e. S ) |