| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonioolem1.x |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | vonioolem1.a |  |-  ( ph -> A : X --> RR ) | 
						
							| 3 |  | vonioolem1.b |  |-  ( ph -> B : X --> RR ) | 
						
							| 4 |  | vonioolem1.u |  |-  ( ph -> X =/= (/) ) | 
						
							| 5 |  | vonioolem1.t |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) < ( B ` k ) ) | 
						
							| 6 |  | vonioolem1.c |  |-  C = ( n e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) | 
						
							| 7 |  | vonioolem1.d |  |-  D = ( n e. NN |-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 8 |  | vonioolem1.s |  |-  S = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) | 
						
							| 9 |  | vonioolem1.r |  |-  T = ( n e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) | 
						
							| 10 |  | vonioolem1.e |  |-  E = inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) | 
						
							| 11 |  | vonioolem1.n |  |-  N = ( ( |_ ` ( 1 / E ) ) + 1 ) | 
						
							| 12 |  | vonioolem1.z |  |-  Z = ( ZZ>= ` N ) | 
						
							| 13 | 9 | a1i |  |-  ( ph -> T = ( n e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) ) | 
						
							| 14 | 6 | a1i |  |-  ( ph -> C = ( n e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) ) | 
						
							| 15 | 1 | mptexd |  |-  ( ph -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) e. _V ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) e. _V ) | 
						
							| 17 | 14 16 | fvmpt2d |  |-  ( ( ph /\ n e. NN ) -> ( C ` n ) = ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) | 
						
							| 18 |  | ovexd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / n ) ) e. _V ) | 
						
							| 19 | 17 18 | fvmpt2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) = ( ( A ` k ) + ( 1 / n ) ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) - ( ( C ` n ) ` k ) ) = ( ( B ` k ) - ( ( A ` k ) + ( 1 / n ) ) ) ) | 
						
							| 21 | 3 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) | 
						
							| 22 | 21 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR ) | 
						
							| 23 | 22 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. CC ) | 
						
							| 24 | 2 | adantr |  |-  ( ( ph /\ n e. NN ) -> A : X --> RR ) | 
						
							| 25 | 24 | ffvelcdmda |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR ) | 
						
							| 26 | 25 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. CC ) | 
						
							| 27 |  | nnrecre |  |-  ( n e. NN -> ( 1 / n ) e. RR ) | 
						
							| 28 | 27 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR ) | 
						
							| 29 | 28 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. CC ) | 
						
							| 30 | 23 26 29 | subsub4d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) = ( ( B ` k ) - ( ( A ` k ) + ( 1 / n ) ) ) ) | 
						
							| 31 | 20 30 | eqtr4d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) - ( ( C ` n ) ` k ) ) = ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) ) | 
						
							| 32 | 31 | prodeq2dv |  |-  ( ( ph /\ n e. NN ) -> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) = prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) ) | 
						
							| 33 | 32 | mpteq2dva |  |-  ( ph -> ( n e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) = ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) ) ) | 
						
							| 34 | 13 33 | eqtrd |  |-  ( ph -> T = ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) ) ) | 
						
							| 35 |  | nfv |  |-  F/ k ph | 
						
							| 36 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 37 | 2 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) | 
						
							| 38 |  | difrp |  |-  ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( ( A ` k ) < ( B ` k ) <-> ( ( B ` k ) - ( A ` k ) ) e. RR+ ) ) | 
						
							| 39 | 37 21 38 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( ( A ` k ) < ( B ` k ) <-> ( ( B ` k ) - ( A ` k ) ) e. RR+ ) ) | 
						
							| 40 | 5 39 | mpbid |  |-  ( ( ph /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. RR+ ) | 
						
							| 41 | 36 40 | sselid |  |-  ( ( ph /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. RR ) | 
						
							| 42 | 41 | recnd |  |-  ( ( ph /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. CC ) | 
						
							| 43 |  | eqid |  |-  ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) ) = ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) ) | 
						
							| 44 | 35 1 42 43 | fprodsubrecnncnv |  |-  ( ph -> ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 45 | 34 44 | eqbrtrd |  |-  ( ph -> T ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 46 |  | nnex |  |-  NN e. _V | 
						
							| 47 | 46 | mptex |  |-  ( n e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) e. _V | 
						
							| 48 | 47 | a1i |  |-  ( ph -> ( n e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) e. _V ) | 
						
							| 49 | 9 48 | eqeltrid |  |-  ( ph -> T e. _V ) | 
						
							| 50 | 46 | mptex |  |-  ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) e. _V | 
						
							| 51 | 50 | a1i |  |-  ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) e. _V ) | 
						
							| 52 | 8 51 | eqeltrid |  |-  ( ph -> S e. _V ) | 
						
							| 53 |  | 1rp |  |-  1 e. RR+ | 
						
							| 54 | 53 | a1i |  |-  ( ph -> 1 e. RR+ ) | 
						
							| 55 |  | eqid |  |-  ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) = ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 56 | 35 55 40 | rnmptssd |  |-  ( ph -> ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) C_ RR+ ) | 
						
							| 57 |  | ltso |  |-  < Or RR | 
						
							| 58 | 57 | a1i |  |-  ( ph -> < Or RR ) | 
						
							| 59 | 55 | rnmptfi |  |-  ( X e. Fin -> ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) e. Fin ) | 
						
							| 60 | 1 59 | syl |  |-  ( ph -> ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) e. Fin ) | 
						
							| 61 | 35 40 55 4 | rnmptn0 |  |-  ( ph -> ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) =/= (/) ) | 
						
							| 62 | 36 | a1i |  |-  ( ph -> RR+ C_ RR ) | 
						
							| 63 | 56 62 | sstrd |  |-  ( ph -> ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) C_ RR ) | 
						
							| 64 |  | fiinfcl |  |-  ( ( < Or RR /\ ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) e. Fin /\ ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) =/= (/) /\ ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) C_ RR ) ) -> inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) e. ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) ) | 
						
							| 65 | 58 60 61 63 64 | syl13anc |  |-  ( ph -> inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) e. ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) ) | 
						
							| 66 | 10 65 | eqeltrid |  |-  ( ph -> E e. ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) ) | 
						
							| 67 | 56 66 | sseldd |  |-  ( ph -> E e. RR+ ) | 
						
							| 68 | 54 67 | rpdivcld |  |-  ( ph -> ( 1 / E ) e. RR+ ) | 
						
							| 69 | 68 | rpred |  |-  ( ph -> ( 1 / E ) e. RR ) | 
						
							| 70 | 68 | rpge0d |  |-  ( ph -> 0 <_ ( 1 / E ) ) | 
						
							| 71 |  | flge0nn0 |  |-  ( ( ( 1 / E ) e. RR /\ 0 <_ ( 1 / E ) ) -> ( |_ ` ( 1 / E ) ) e. NN0 ) | 
						
							| 72 | 69 70 71 | syl2anc |  |-  ( ph -> ( |_ ` ( 1 / E ) ) e. NN0 ) | 
						
							| 73 |  | nn0p1nn |  |-  ( ( |_ ` ( 1 / E ) ) e. NN0 -> ( ( |_ ` ( 1 / E ) ) + 1 ) e. NN ) | 
						
							| 74 | 72 73 | syl |  |-  ( ph -> ( ( |_ ` ( 1 / E ) ) + 1 ) e. NN ) | 
						
							| 75 | 74 | nnzd |  |-  ( ph -> ( ( |_ ` ( 1 / E ) ) + 1 ) e. ZZ ) | 
						
							| 76 | 11 75 | eqeltrid |  |-  ( ph -> N e. ZZ ) | 
						
							| 77 | 11 | recnnltrp |  |-  ( E e. RR+ -> ( N e. NN /\ ( 1 / N ) < E ) ) | 
						
							| 78 | 67 77 | syl |  |-  ( ph -> ( N e. NN /\ ( 1 / N ) < E ) ) | 
						
							| 79 | 78 | simpld |  |-  ( ph -> N e. NN ) | 
						
							| 80 |  | uznnssnn |  |-  ( N e. NN -> ( ZZ>= ` N ) C_ NN ) | 
						
							| 81 | 79 80 | syl |  |-  ( ph -> ( ZZ>= ` N ) C_ NN ) | 
						
							| 82 | 12 81 | eqsstrid |  |-  ( ph -> Z C_ NN ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ph /\ n e. Z ) -> Z C_ NN ) | 
						
							| 84 |  | simpr |  |-  ( ( ph /\ n e. Z ) -> n e. Z ) | 
						
							| 85 | 83 84 | sseldd |  |-  ( ( ph /\ n e. Z ) -> n e. NN ) | 
						
							| 86 | 7 | a1i |  |-  ( ph -> D = ( n e. NN |-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 87 | 1 | adantr |  |-  ( ( ph /\ n e. NN ) -> X e. Fin ) | 
						
							| 88 |  | eqid |  |-  dom ( voln ` X ) = dom ( voln ` X ) | 
						
							| 89 | 25 28 | readdcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / n ) ) e. RR ) | 
						
							| 90 | 89 | fmpttd |  |-  ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) : X --> RR ) | 
						
							| 91 | 17 | feq1d |  |-  ( ( ph /\ n e. NN ) -> ( ( C ` n ) : X --> RR <-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) : X --> RR ) ) | 
						
							| 92 | 90 91 | mpbird |  |-  ( ( ph /\ n e. NN ) -> ( C ` n ) : X --> RR ) | 
						
							| 93 | 3 | adantr |  |-  ( ( ph /\ n e. NN ) -> B : X --> RR ) | 
						
							| 94 | 87 88 92 93 | hoimbl |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) e. dom ( voln ` X ) ) | 
						
							| 95 | 94 | elexd |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) e. _V ) | 
						
							| 96 | 86 95 | fvmpt2d |  |-  ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 97 | 85 96 | syldan |  |-  ( ( ph /\ n e. Z ) -> ( D ` n ) = X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 98 | 97 | fveq2d |  |-  ( ( ph /\ n e. Z ) -> ( ( voln ` X ) ` ( D ` n ) ) = ( ( voln ` X ) ` X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 99 | 1 | adantr |  |-  ( ( ph /\ n e. Z ) -> X e. Fin ) | 
						
							| 100 | 4 | adantr |  |-  ( ( ph /\ n e. Z ) -> X =/= (/) ) | 
						
							| 101 | 85 92 | syldan |  |-  ( ( ph /\ n e. Z ) -> ( C ` n ) : X --> RR ) | 
						
							| 102 | 3 | adantr |  |-  ( ( ph /\ n e. Z ) -> B : X --> RR ) | 
						
							| 103 |  | eqid |  |-  X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) = X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) | 
						
							| 104 | 99 100 101 102 103 | vonn0hoi |  |-  ( ( ph /\ n e. Z ) -> ( ( voln ` X ) ` X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) = prod_ k e. X ( vol ` ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 105 | 101 | ffvelcdmda |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( ( C ` n ) ` k ) e. RR ) | 
						
							| 106 | 85 22 | syldanl |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( B ` k ) e. RR ) | 
						
							| 107 |  | volico |  |-  ( ( ( ( C ` n ) ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( vol ` ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) = if ( ( ( C ` n ) ` k ) < ( B ` k ) , ( ( B ` k ) - ( ( C ` n ) ` k ) ) , 0 ) ) | 
						
							| 108 | 105 106 107 | syl2anc |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( vol ` ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) = if ( ( ( C ` n ) ` k ) < ( B ` k ) , ( ( B ` k ) - ( ( C ` n ) ` k ) ) , 0 ) ) | 
						
							| 109 | 85 19 | syldanl |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( ( C ` n ) ` k ) = ( ( A ` k ) + ( 1 / n ) ) ) | 
						
							| 110 | 85 28 | syldanl |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( 1 / n ) e. RR ) | 
						
							| 111 | 79 | nnrecred |  |-  ( ph -> ( 1 / N ) e. RR ) | 
						
							| 112 | 111 | ad2antrr |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( 1 / N ) e. RR ) | 
						
							| 113 | 41 | adantlr |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. RR ) | 
						
							| 114 | 12 | eleq2i |  |-  ( n e. Z <-> n e. ( ZZ>= ` N ) ) | 
						
							| 115 | 114 | biimpi |  |-  ( n e. Z -> n e. ( ZZ>= ` N ) ) | 
						
							| 116 |  | eluzle |  |-  ( n e. ( ZZ>= ` N ) -> N <_ n ) | 
						
							| 117 | 115 116 | syl |  |-  ( n e. Z -> N <_ n ) | 
						
							| 118 | 117 | adantl |  |-  ( ( ph /\ n e. Z ) -> N <_ n ) | 
						
							| 119 | 79 | nnrpd |  |-  ( ph -> N e. RR+ ) | 
						
							| 120 | 119 | adantr |  |-  ( ( ph /\ n e. Z ) -> N e. RR+ ) | 
						
							| 121 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 122 | 85 121 | syl |  |-  ( ( ph /\ n e. Z ) -> n e. RR+ ) | 
						
							| 123 | 120 122 | lerecd |  |-  ( ( ph /\ n e. Z ) -> ( N <_ n <-> ( 1 / n ) <_ ( 1 / N ) ) ) | 
						
							| 124 | 118 123 | mpbid |  |-  ( ( ph /\ n e. Z ) -> ( 1 / n ) <_ ( 1 / N ) ) | 
						
							| 125 | 124 | adantr |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( 1 / n ) <_ ( 1 / N ) ) | 
						
							| 126 | 111 | adantr |  |-  ( ( ph /\ k e. X ) -> ( 1 / N ) e. RR ) | 
						
							| 127 | 36 67 | sselid |  |-  ( ph -> E e. RR ) | 
						
							| 128 | 127 | adantr |  |-  ( ( ph /\ k e. X ) -> E e. RR ) | 
						
							| 129 | 78 | simprd |  |-  ( ph -> ( 1 / N ) < E ) | 
						
							| 130 | 129 | adantr |  |-  ( ( ph /\ k e. X ) -> ( 1 / N ) < E ) | 
						
							| 131 | 63 | adantr |  |-  ( ( ph /\ k e. X ) -> ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) C_ RR ) | 
						
							| 132 | 60 | adantr |  |-  ( ( ph /\ k e. X ) -> ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) e. Fin ) | 
						
							| 133 |  | id |  |-  ( k e. X -> k e. X ) | 
						
							| 134 |  | ovexd |  |-  ( k e. X -> ( ( B ` k ) - ( A ` k ) ) e. _V ) | 
						
							| 135 | 55 | elrnmpt1 |  |-  ( ( k e. X /\ ( ( B ` k ) - ( A ` k ) ) e. _V ) -> ( ( B ` k ) - ( A ` k ) ) e. ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) ) | 
						
							| 136 | 133 134 135 | syl2anc |  |-  ( k e. X -> ( ( B ` k ) - ( A ` k ) ) e. ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) ) | 
						
							| 137 | 136 | adantl |  |-  ( ( ph /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) ) | 
						
							| 138 |  | infrefilb |  |-  ( ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) C_ RR /\ ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) e. Fin /\ ( ( B ` k ) - ( A ` k ) ) e. ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) ) -> inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) <_ ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 139 | 131 132 137 138 | syl3anc |  |-  ( ( ph /\ k e. X ) -> inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) <_ ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 140 | 10 139 | eqbrtrid |  |-  ( ( ph /\ k e. X ) -> E <_ ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 141 | 126 128 41 130 140 | ltletrd |  |-  ( ( ph /\ k e. X ) -> ( 1 / N ) < ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 142 | 141 | adantlr |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( 1 / N ) < ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 143 | 110 112 113 125 142 | lelttrd |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( 1 / n ) < ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 144 | 85 25 | syldanl |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( A ` k ) e. RR ) | 
						
							| 145 | 144 110 106 | ltaddsub2d |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( ( ( A ` k ) + ( 1 / n ) ) < ( B ` k ) <-> ( 1 / n ) < ( ( B ` k ) - ( A ` k ) ) ) ) | 
						
							| 146 | 143 145 | mpbird |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / n ) ) < ( B ` k ) ) | 
						
							| 147 | 109 146 | eqbrtrd |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( ( C ` n ) ` k ) < ( B ` k ) ) | 
						
							| 148 | 147 | iftrued |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> if ( ( ( C ` n ) ` k ) < ( B ` k ) , ( ( B ` k ) - ( ( C ` n ) ` k ) ) , 0 ) = ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) | 
						
							| 149 | 108 148 | eqtrd |  |-  ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( vol ` ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) = ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) | 
						
							| 150 | 149 | prodeq2dv |  |-  ( ( ph /\ n e. Z ) -> prod_ k e. X ( vol ` ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) = prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) | 
						
							| 151 | 98 104 150 | 3eqtrd |  |-  ( ( ph /\ n e. Z ) -> ( ( voln ` X ) ` ( D ` n ) ) = prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) | 
						
							| 152 |  | fvexd |  |-  ( ( ph /\ n e. Z ) -> ( ( voln ` X ) ` ( D ` n ) ) e. _V ) | 
						
							| 153 | 8 | fvmpt2 |  |-  ( ( n e. NN /\ ( ( voln ` X ) ` ( D ` n ) ) e. _V ) -> ( S ` n ) = ( ( voln ` X ) ` ( D ` n ) ) ) | 
						
							| 154 | 85 152 153 | syl2anc |  |-  ( ( ph /\ n e. Z ) -> ( S ` n ) = ( ( voln ` X ) ` ( D ` n ) ) ) | 
						
							| 155 |  | prodex |  |-  prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) e. _V | 
						
							| 156 | 155 | a1i |  |-  ( ( ph /\ n e. Z ) -> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) e. _V ) | 
						
							| 157 | 9 | fvmpt2 |  |-  ( ( n e. NN /\ prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) e. _V ) -> ( T ` n ) = prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) | 
						
							| 158 | 85 156 157 | syl2anc |  |-  ( ( ph /\ n e. Z ) -> ( T ` n ) = prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) | 
						
							| 159 | 151 154 158 | 3eqtr4rd |  |-  ( ( ph /\ n e. Z ) -> ( T ` n ) = ( S ` n ) ) | 
						
							| 160 | 12 49 52 76 159 | climeq |  |-  ( ph -> ( T ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) <-> S ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) ) | 
						
							| 161 | 45 160 | mpbid |  |-  ( ph -> S ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |