| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonioolem1.x |
|- ( ph -> X e. Fin ) |
| 2 |
|
vonioolem1.a |
|- ( ph -> A : X --> RR ) |
| 3 |
|
vonioolem1.b |
|- ( ph -> B : X --> RR ) |
| 4 |
|
vonioolem1.u |
|- ( ph -> X =/= (/) ) |
| 5 |
|
vonioolem1.t |
|- ( ( ph /\ k e. X ) -> ( A ` k ) < ( B ` k ) ) |
| 6 |
|
vonioolem1.c |
|- C = ( n e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) |
| 7 |
|
vonioolem1.d |
|- D = ( n e. NN |-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) |
| 8 |
|
vonioolem1.s |
|- S = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) |
| 9 |
|
vonioolem1.r |
|- T = ( n e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) |
| 10 |
|
vonioolem1.e |
|- E = inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) |
| 11 |
|
vonioolem1.n |
|- N = ( ( |_ ` ( 1 / E ) ) + 1 ) |
| 12 |
|
vonioolem1.z |
|- Z = ( ZZ>= ` N ) |
| 13 |
9
|
a1i |
|- ( ph -> T = ( n e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) ) |
| 14 |
6
|
a1i |
|- ( ph -> C = ( n e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) ) |
| 15 |
1
|
mptexd |
|- ( ph -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) e. _V ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) e. _V ) |
| 17 |
14 16
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) = ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) |
| 18 |
|
ovexd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / n ) ) e. _V ) |
| 19 |
17 18
|
fvmpt2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) = ( ( A ` k ) + ( 1 / n ) ) ) |
| 20 |
19
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) - ( ( C ` n ) ` k ) ) = ( ( B ` k ) - ( ( A ` k ) + ( 1 / n ) ) ) ) |
| 21 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
| 22 |
21
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR ) |
| 23 |
22
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. CC ) |
| 24 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> A : X --> RR ) |
| 25 |
24
|
ffvelcdmda |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR ) |
| 26 |
25
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. CC ) |
| 27 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
| 28 |
27
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR ) |
| 29 |
28
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. CC ) |
| 30 |
23 26 29
|
subsub4d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) = ( ( B ` k ) - ( ( A ` k ) + ( 1 / n ) ) ) ) |
| 31 |
20 30
|
eqtr4d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) - ( ( C ` n ) ` k ) ) = ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) ) |
| 32 |
31
|
prodeq2dv |
|- ( ( ph /\ n e. NN ) -> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) = prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) ) |
| 33 |
32
|
mpteq2dva |
|- ( ph -> ( n e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) = ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) ) ) |
| 34 |
13 33
|
eqtrd |
|- ( ph -> T = ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) ) ) |
| 35 |
|
nfv |
|- F/ k ph |
| 36 |
|
rpssre |
|- RR+ C_ RR |
| 37 |
2
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
| 38 |
|
difrp |
|- ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( ( A ` k ) < ( B ` k ) <-> ( ( B ` k ) - ( A ` k ) ) e. RR+ ) ) |
| 39 |
37 21 38
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( ( A ` k ) < ( B ` k ) <-> ( ( B ` k ) - ( A ` k ) ) e. RR+ ) ) |
| 40 |
5 39
|
mpbid |
|- ( ( ph /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. RR+ ) |
| 41 |
36 40
|
sselid |
|- ( ( ph /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. RR ) |
| 42 |
41
|
recnd |
|- ( ( ph /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. CC ) |
| 43 |
|
eqid |
|- ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) ) = ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) ) |
| 44 |
35 1 42 43
|
fprodsubrecnncnv |
|- ( ph -> ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) - ( 1 / n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
| 45 |
34 44
|
eqbrtrd |
|- ( ph -> T ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
| 46 |
|
nnex |
|- NN e. _V |
| 47 |
46
|
mptex |
|- ( n e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) e. _V |
| 48 |
47
|
a1i |
|- ( ph -> ( n e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) e. _V ) |
| 49 |
9 48
|
eqeltrid |
|- ( ph -> T e. _V ) |
| 50 |
46
|
mptex |
|- ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) e. _V |
| 51 |
50
|
a1i |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) e. _V ) |
| 52 |
8 51
|
eqeltrid |
|- ( ph -> S e. _V ) |
| 53 |
|
1rp |
|- 1 e. RR+ |
| 54 |
53
|
a1i |
|- ( ph -> 1 e. RR+ ) |
| 55 |
|
eqid |
|- ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) = ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) |
| 56 |
35 55 40
|
rnmptssd |
|- ( ph -> ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) C_ RR+ ) |
| 57 |
|
ltso |
|- < Or RR |
| 58 |
57
|
a1i |
|- ( ph -> < Or RR ) |
| 59 |
55
|
rnmptfi |
|- ( X e. Fin -> ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) e. Fin ) |
| 60 |
1 59
|
syl |
|- ( ph -> ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) e. Fin ) |
| 61 |
35 40 55 4
|
rnmptn0 |
|- ( ph -> ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) =/= (/) ) |
| 62 |
36
|
a1i |
|- ( ph -> RR+ C_ RR ) |
| 63 |
56 62
|
sstrd |
|- ( ph -> ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) C_ RR ) |
| 64 |
|
fiinfcl |
|- ( ( < Or RR /\ ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) e. Fin /\ ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) =/= (/) /\ ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) C_ RR ) ) -> inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) e. ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) ) |
| 65 |
58 60 61 63 64
|
syl13anc |
|- ( ph -> inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) e. ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) ) |
| 66 |
10 65
|
eqeltrid |
|- ( ph -> E e. ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) ) |
| 67 |
56 66
|
sseldd |
|- ( ph -> E e. RR+ ) |
| 68 |
54 67
|
rpdivcld |
|- ( ph -> ( 1 / E ) e. RR+ ) |
| 69 |
68
|
rpred |
|- ( ph -> ( 1 / E ) e. RR ) |
| 70 |
68
|
rpge0d |
|- ( ph -> 0 <_ ( 1 / E ) ) |
| 71 |
|
flge0nn0 |
|- ( ( ( 1 / E ) e. RR /\ 0 <_ ( 1 / E ) ) -> ( |_ ` ( 1 / E ) ) e. NN0 ) |
| 72 |
69 70 71
|
syl2anc |
|- ( ph -> ( |_ ` ( 1 / E ) ) e. NN0 ) |
| 73 |
|
nn0p1nn |
|- ( ( |_ ` ( 1 / E ) ) e. NN0 -> ( ( |_ ` ( 1 / E ) ) + 1 ) e. NN ) |
| 74 |
72 73
|
syl |
|- ( ph -> ( ( |_ ` ( 1 / E ) ) + 1 ) e. NN ) |
| 75 |
74
|
nnzd |
|- ( ph -> ( ( |_ ` ( 1 / E ) ) + 1 ) e. ZZ ) |
| 76 |
11 75
|
eqeltrid |
|- ( ph -> N e. ZZ ) |
| 77 |
11
|
recnnltrp |
|- ( E e. RR+ -> ( N e. NN /\ ( 1 / N ) < E ) ) |
| 78 |
67 77
|
syl |
|- ( ph -> ( N e. NN /\ ( 1 / N ) < E ) ) |
| 79 |
78
|
simpld |
|- ( ph -> N e. NN ) |
| 80 |
|
uznnssnn |
|- ( N e. NN -> ( ZZ>= ` N ) C_ NN ) |
| 81 |
79 80
|
syl |
|- ( ph -> ( ZZ>= ` N ) C_ NN ) |
| 82 |
12 81
|
eqsstrid |
|- ( ph -> Z C_ NN ) |
| 83 |
82
|
adantr |
|- ( ( ph /\ n e. Z ) -> Z C_ NN ) |
| 84 |
|
simpr |
|- ( ( ph /\ n e. Z ) -> n e. Z ) |
| 85 |
83 84
|
sseldd |
|- ( ( ph /\ n e. Z ) -> n e. NN ) |
| 86 |
7
|
a1i |
|- ( ph -> D = ( n e. NN |-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) ) |
| 87 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. Fin ) |
| 88 |
|
eqid |
|- dom ( voln ` X ) = dom ( voln ` X ) |
| 89 |
25 28
|
readdcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / n ) ) e. RR ) |
| 90 |
89
|
fmpttd |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) : X --> RR ) |
| 91 |
17
|
feq1d |
|- ( ( ph /\ n e. NN ) -> ( ( C ` n ) : X --> RR <-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) : X --> RR ) ) |
| 92 |
90 91
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) : X --> RR ) |
| 93 |
3
|
adantr |
|- ( ( ph /\ n e. NN ) -> B : X --> RR ) |
| 94 |
87 88 92 93
|
hoimbl |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) e. dom ( voln ` X ) ) |
| 95 |
94
|
elexd |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) e. _V ) |
| 96 |
86 95
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) |
| 97 |
85 96
|
syldan |
|- ( ( ph /\ n e. Z ) -> ( D ` n ) = X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) |
| 98 |
97
|
fveq2d |
|- ( ( ph /\ n e. Z ) -> ( ( voln ` X ) ` ( D ` n ) ) = ( ( voln ` X ) ` X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) ) |
| 99 |
1
|
adantr |
|- ( ( ph /\ n e. Z ) -> X e. Fin ) |
| 100 |
4
|
adantr |
|- ( ( ph /\ n e. Z ) -> X =/= (/) ) |
| 101 |
85 92
|
syldan |
|- ( ( ph /\ n e. Z ) -> ( C ` n ) : X --> RR ) |
| 102 |
3
|
adantr |
|- ( ( ph /\ n e. Z ) -> B : X --> RR ) |
| 103 |
|
eqid |
|- X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) = X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) |
| 104 |
99 100 101 102 103
|
vonn0hoi |
|- ( ( ph /\ n e. Z ) -> ( ( voln ` X ) ` X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) = prod_ k e. X ( vol ` ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) ) |
| 105 |
101
|
ffvelcdmda |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( ( C ` n ) ` k ) e. RR ) |
| 106 |
85 22
|
syldanl |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( B ` k ) e. RR ) |
| 107 |
|
volico |
|- ( ( ( ( C ` n ) ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( vol ` ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) = if ( ( ( C ` n ) ` k ) < ( B ` k ) , ( ( B ` k ) - ( ( C ` n ) ` k ) ) , 0 ) ) |
| 108 |
105 106 107
|
syl2anc |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( vol ` ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) = if ( ( ( C ` n ) ` k ) < ( B ` k ) , ( ( B ` k ) - ( ( C ` n ) ` k ) ) , 0 ) ) |
| 109 |
85 19
|
syldanl |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( ( C ` n ) ` k ) = ( ( A ` k ) + ( 1 / n ) ) ) |
| 110 |
85 28
|
syldanl |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( 1 / n ) e. RR ) |
| 111 |
79
|
nnrecred |
|- ( ph -> ( 1 / N ) e. RR ) |
| 112 |
111
|
ad2antrr |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( 1 / N ) e. RR ) |
| 113 |
41
|
adantlr |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. RR ) |
| 114 |
12
|
eleq2i |
|- ( n e. Z <-> n e. ( ZZ>= ` N ) ) |
| 115 |
114
|
biimpi |
|- ( n e. Z -> n e. ( ZZ>= ` N ) ) |
| 116 |
|
eluzle |
|- ( n e. ( ZZ>= ` N ) -> N <_ n ) |
| 117 |
115 116
|
syl |
|- ( n e. Z -> N <_ n ) |
| 118 |
117
|
adantl |
|- ( ( ph /\ n e. Z ) -> N <_ n ) |
| 119 |
79
|
nnrpd |
|- ( ph -> N e. RR+ ) |
| 120 |
119
|
adantr |
|- ( ( ph /\ n e. Z ) -> N e. RR+ ) |
| 121 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
| 122 |
85 121
|
syl |
|- ( ( ph /\ n e. Z ) -> n e. RR+ ) |
| 123 |
120 122
|
lerecd |
|- ( ( ph /\ n e. Z ) -> ( N <_ n <-> ( 1 / n ) <_ ( 1 / N ) ) ) |
| 124 |
118 123
|
mpbid |
|- ( ( ph /\ n e. Z ) -> ( 1 / n ) <_ ( 1 / N ) ) |
| 125 |
124
|
adantr |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( 1 / n ) <_ ( 1 / N ) ) |
| 126 |
111
|
adantr |
|- ( ( ph /\ k e. X ) -> ( 1 / N ) e. RR ) |
| 127 |
36 67
|
sselid |
|- ( ph -> E e. RR ) |
| 128 |
127
|
adantr |
|- ( ( ph /\ k e. X ) -> E e. RR ) |
| 129 |
78
|
simprd |
|- ( ph -> ( 1 / N ) < E ) |
| 130 |
129
|
adantr |
|- ( ( ph /\ k e. X ) -> ( 1 / N ) < E ) |
| 131 |
63
|
adantr |
|- ( ( ph /\ k e. X ) -> ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) C_ RR ) |
| 132 |
60
|
adantr |
|- ( ( ph /\ k e. X ) -> ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) e. Fin ) |
| 133 |
|
id |
|- ( k e. X -> k e. X ) |
| 134 |
|
ovexd |
|- ( k e. X -> ( ( B ` k ) - ( A ` k ) ) e. _V ) |
| 135 |
55
|
elrnmpt1 |
|- ( ( k e. X /\ ( ( B ` k ) - ( A ` k ) ) e. _V ) -> ( ( B ` k ) - ( A ` k ) ) e. ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) ) |
| 136 |
133 134 135
|
syl2anc |
|- ( k e. X -> ( ( B ` k ) - ( A ` k ) ) e. ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) ) |
| 137 |
136
|
adantl |
|- ( ( ph /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) ) |
| 138 |
|
infrefilb |
|- ( ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) C_ RR /\ ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) e. Fin /\ ( ( B ` k ) - ( A ` k ) ) e. ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) ) -> inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) <_ ( ( B ` k ) - ( A ` k ) ) ) |
| 139 |
131 132 137 138
|
syl3anc |
|- ( ( ph /\ k e. X ) -> inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) <_ ( ( B ` k ) - ( A ` k ) ) ) |
| 140 |
10 139
|
eqbrtrid |
|- ( ( ph /\ k e. X ) -> E <_ ( ( B ` k ) - ( A ` k ) ) ) |
| 141 |
126 128 41 130 140
|
ltletrd |
|- ( ( ph /\ k e. X ) -> ( 1 / N ) < ( ( B ` k ) - ( A ` k ) ) ) |
| 142 |
141
|
adantlr |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( 1 / N ) < ( ( B ` k ) - ( A ` k ) ) ) |
| 143 |
110 112 113 125 142
|
lelttrd |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( 1 / n ) < ( ( B ` k ) - ( A ` k ) ) ) |
| 144 |
85 25
|
syldanl |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( A ` k ) e. RR ) |
| 145 |
144 110 106
|
ltaddsub2d |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( ( ( A ` k ) + ( 1 / n ) ) < ( B ` k ) <-> ( 1 / n ) < ( ( B ` k ) - ( A ` k ) ) ) ) |
| 146 |
143 145
|
mpbird |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / n ) ) < ( B ` k ) ) |
| 147 |
109 146
|
eqbrtrd |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( ( C ` n ) ` k ) < ( B ` k ) ) |
| 148 |
147
|
iftrued |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> if ( ( ( C ` n ) ` k ) < ( B ` k ) , ( ( B ` k ) - ( ( C ` n ) ` k ) ) , 0 ) = ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) |
| 149 |
108 148
|
eqtrd |
|- ( ( ( ph /\ n e. Z ) /\ k e. X ) -> ( vol ` ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) = ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) |
| 150 |
149
|
prodeq2dv |
|- ( ( ph /\ n e. Z ) -> prod_ k e. X ( vol ` ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) = prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) |
| 151 |
98 104 150
|
3eqtrd |
|- ( ( ph /\ n e. Z ) -> ( ( voln ` X ) ` ( D ` n ) ) = prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) |
| 152 |
|
fvexd |
|- ( ( ph /\ n e. Z ) -> ( ( voln ` X ) ` ( D ` n ) ) e. _V ) |
| 153 |
8
|
fvmpt2 |
|- ( ( n e. NN /\ ( ( voln ` X ) ` ( D ` n ) ) e. _V ) -> ( S ` n ) = ( ( voln ` X ) ` ( D ` n ) ) ) |
| 154 |
85 152 153
|
syl2anc |
|- ( ( ph /\ n e. Z ) -> ( S ` n ) = ( ( voln ` X ) ` ( D ` n ) ) ) |
| 155 |
|
prodex |
|- prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) e. _V |
| 156 |
155
|
a1i |
|- ( ( ph /\ n e. Z ) -> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) e. _V ) |
| 157 |
9
|
fvmpt2 |
|- ( ( n e. NN /\ prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) e. _V ) -> ( T ` n ) = prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) |
| 158 |
85 156 157
|
syl2anc |
|- ( ( ph /\ n e. Z ) -> ( T ` n ) = prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) |
| 159 |
151 154 158
|
3eqtr4rd |
|- ( ( ph /\ n e. Z ) -> ( T ` n ) = ( S ` n ) ) |
| 160 |
12 49 52 76 159
|
climeq |
|- ( ph -> ( T ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) <-> S ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) ) |
| 161 |
45 160
|
mpbid |
|- ( ph -> S ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |