| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonioolem2.x |
|- ( ph -> X e. Fin ) |
| 2 |
|
vonioolem2.a |
|- ( ph -> A : X --> RR ) |
| 3 |
|
vonioolem2.b |
|- ( ph -> B : X --> RR ) |
| 4 |
|
vonioolem2.n |
|- ( ph -> X =/= (/) ) |
| 5 |
|
vonioolem2.t |
|- ( ( ph /\ k e. X ) -> ( A ` k ) < ( B ` k ) ) |
| 6 |
|
vonioolem2.i |
|- I = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) |
| 7 |
|
vonioolem2.c |
|- C = ( n e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) |
| 8 |
|
vonioolem2.d |
|- D = ( n e. NN |-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) |
| 9 |
1
|
vonmea |
|- ( ph -> ( voln ` X ) e. Meas ) |
| 10 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 11 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 12 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. Fin ) |
| 13 |
|
eqid |
|- dom ( voln ` X ) = dom ( voln ` X ) |
| 14 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> A : X --> RR ) |
| 15 |
14
|
ffvelcdmda |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR ) |
| 16 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
| 17 |
16
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR ) |
| 18 |
15 17
|
readdcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / n ) ) e. RR ) |
| 19 |
18
|
fmpttd |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) : X --> RR ) |
| 20 |
7
|
a1i |
|- ( ph -> C = ( n e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) ) |
| 21 |
1
|
mptexd |
|- ( ph -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) e. _V ) |
| 22 |
21
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) e. _V ) |
| 23 |
20 22
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) = ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) |
| 24 |
23
|
feq1d |
|- ( ( ph /\ n e. NN ) -> ( ( C ` n ) : X --> RR <-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) : X --> RR ) ) |
| 25 |
19 24
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) : X --> RR ) |
| 26 |
3
|
adantr |
|- ( ( ph /\ n e. NN ) -> B : X --> RR ) |
| 27 |
12 13 25 26
|
hoimbl |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) e. dom ( voln ` X ) ) |
| 28 |
27 8
|
fmptd |
|- ( ph -> D : NN --> dom ( voln ` X ) ) |
| 29 |
|
nfv |
|- F/ k ( ph /\ n e. NN ) |
| 30 |
|
oveq2 |
|- ( n = m -> ( 1 / n ) = ( 1 / m ) ) |
| 31 |
30
|
oveq2d |
|- ( n = m -> ( ( A ` k ) + ( 1 / n ) ) = ( ( A ` k ) + ( 1 / m ) ) ) |
| 32 |
31
|
mpteq2dv |
|- ( n = m -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) = ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) ) |
| 33 |
32
|
cbvmptv |
|- ( n e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) = ( m e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) ) |
| 34 |
7 33
|
eqtri |
|- C = ( m e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) ) |
| 35 |
|
oveq2 |
|- ( m = ( n + 1 ) -> ( 1 / m ) = ( 1 / ( n + 1 ) ) ) |
| 36 |
35
|
oveq2d |
|- ( m = ( n + 1 ) -> ( ( A ` k ) + ( 1 / m ) ) = ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) |
| 37 |
36
|
mpteq2dv |
|- ( m = ( n + 1 ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) = ( k e. X |-> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) ) |
| 38 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
| 39 |
38
|
peano2nnd |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) e. NN ) |
| 40 |
12
|
mptexd |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) e. _V ) |
| 41 |
34 37 39 40
|
fvmptd3 |
|- ( ( ph /\ n e. NN ) -> ( C ` ( n + 1 ) ) = ( k e. X |-> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) ) |
| 42 |
|
ovexd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) e. _V ) |
| 43 |
41 42
|
fvmpt2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) = ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) |
| 44 |
|
1red |
|- ( n e. NN -> 1 e. RR ) |
| 45 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
| 46 |
45 44
|
readdcld |
|- ( n e. NN -> ( n + 1 ) e. RR ) |
| 47 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
| 48 |
|
nnne0 |
|- ( ( n + 1 ) e. NN -> ( n + 1 ) =/= 0 ) |
| 49 |
47 48
|
syl |
|- ( n e. NN -> ( n + 1 ) =/= 0 ) |
| 50 |
44 46 49
|
redivcld |
|- ( n e. NN -> ( 1 / ( n + 1 ) ) e. RR ) |
| 51 |
50
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / ( n + 1 ) ) e. RR ) |
| 52 |
15 51
|
readdcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) e. RR ) |
| 53 |
43 52
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) e. RR ) |
| 54 |
53
|
rexrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) e. RR* ) |
| 55 |
|
ressxr |
|- RR C_ RR* |
| 56 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
| 57 |
55 56
|
sselid |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR* ) |
| 58 |
57
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR* ) |
| 59 |
45
|
ltp1d |
|- ( n e. NN -> n < ( n + 1 ) ) |
| 60 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
| 61 |
47
|
nnrpd |
|- ( n e. NN -> ( n + 1 ) e. RR+ ) |
| 62 |
60 61
|
ltrecd |
|- ( n e. NN -> ( n < ( n + 1 ) <-> ( 1 / ( n + 1 ) ) < ( 1 / n ) ) ) |
| 63 |
59 62
|
mpbid |
|- ( n e. NN -> ( 1 / ( n + 1 ) ) < ( 1 / n ) ) |
| 64 |
50 16 63
|
ltled |
|- ( n e. NN -> ( 1 / ( n + 1 ) ) <_ ( 1 / n ) ) |
| 65 |
64
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / ( n + 1 ) ) <_ ( 1 / n ) ) |
| 66 |
51 17 15 65
|
leadd2dd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) <_ ( ( A ` k ) + ( 1 / n ) ) ) |
| 67 |
|
ovexd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / n ) ) e. _V ) |
| 68 |
23 67
|
fvmpt2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) = ( ( A ` k ) + ( 1 / n ) ) ) |
| 69 |
43 68
|
breq12d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) <-> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) <_ ( ( A ` k ) + ( 1 / n ) ) ) ) |
| 70 |
66 69
|
mpbird |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) ) |
| 71 |
56
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR ) |
| 72 |
|
eqidd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) = ( B ` k ) ) |
| 73 |
71 72
|
eqled |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) <_ ( B ` k ) ) |
| 74 |
|
icossico |
|- ( ( ( ( ( C ` ( n + 1 ) ) ` k ) e. RR* /\ ( B ` k ) e. RR* ) /\ ( ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) /\ ( B ` k ) <_ ( B ` k ) ) ) -> ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) C_ ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) |
| 75 |
54 58 70 73 74
|
syl22anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) C_ ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) |
| 76 |
29 75
|
ixpssixp |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) C_ X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) |
| 77 |
8
|
a1i |
|- ( ph -> D = ( n e. NN |-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) ) |
| 78 |
27
|
elexd |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) e. _V ) |
| 79 |
77 78
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) |
| 80 |
|
fveq2 |
|- ( n = m -> ( C ` n ) = ( C ` m ) ) |
| 81 |
80
|
fveq1d |
|- ( n = m -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) |
| 82 |
81
|
oveq1d |
|- ( n = m -> ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) = ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) ) |
| 83 |
82
|
ixpeq2dv |
|- ( n = m -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) = X_ k e. X ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) ) |
| 84 |
83
|
cbvmptv |
|- ( n e. NN |-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) = ( m e. NN |-> X_ k e. X ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) ) |
| 85 |
8 84
|
eqtri |
|- D = ( m e. NN |-> X_ k e. X ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) ) |
| 86 |
|
fveq2 |
|- ( m = ( n + 1 ) -> ( C ` m ) = ( C ` ( n + 1 ) ) ) |
| 87 |
86
|
fveq1d |
|- ( m = ( n + 1 ) -> ( ( C ` m ) ` k ) = ( ( C ` ( n + 1 ) ) ` k ) ) |
| 88 |
87
|
oveq1d |
|- ( m = ( n + 1 ) -> ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) = ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) |
| 89 |
88
|
ixpeq2dv |
|- ( m = ( n + 1 ) -> X_ k e. X ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) = X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) |
| 90 |
|
ovex |
|- ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V |
| 91 |
90
|
rgenw |
|- A. k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V |
| 92 |
|
ixpexg |
|- ( A. k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V -> X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V ) |
| 93 |
91 92
|
ax-mp |
|- X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V |
| 94 |
93
|
a1i |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V ) |
| 95 |
85 89 39 94
|
fvmptd3 |
|- ( ( ph /\ n e. NN ) -> ( D ` ( n + 1 ) ) = X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) |
| 96 |
79 95
|
sseq12d |
|- ( ( ph /\ n e. NN ) -> ( ( D ` n ) C_ ( D ` ( n + 1 ) ) <-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) C_ X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) ) |
| 97 |
76 96
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) C_ ( D ` ( n + 1 ) ) ) |
| 98 |
1 13 2 3
|
hoimbl |
|- ( ph -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) e. dom ( voln ` X ) ) |
| 99 |
|
nfv |
|- F/ k ph |
| 100 |
2
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
| 101 |
99 1 100 56
|
vonhoire |
|- ( ph -> ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
| 102 |
6
|
a1i |
|- ( ph -> I = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) |
| 103 |
|
nftru |
|- F/ k T. |
| 104 |
|
ioossico |
|- ( ( A ` k ) (,) ( B ` k ) ) C_ ( ( A ` k ) [,) ( B ` k ) ) |
| 105 |
104
|
a1i |
|- ( ( T. /\ k e. X ) -> ( ( A ` k ) (,) ( B ` k ) ) C_ ( ( A ` k ) [,) ( B ` k ) ) ) |
| 106 |
103 105
|
ixpssixp |
|- ( T. -> X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
| 107 |
106
|
mptru |
|- X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) |
| 108 |
107
|
a1i |
|- ( ph -> X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
| 109 |
102 108
|
eqsstrd |
|- ( ph -> I C_ X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
| 110 |
55
|
a1i |
|- ( ph -> RR C_ RR* ) |
| 111 |
2 110
|
fssd |
|- ( ph -> A : X --> RR* ) |
| 112 |
3 110
|
fssd |
|- ( ph -> B : X --> RR* ) |
| 113 |
1 13 111 112
|
ioovonmbl |
|- ( ph -> X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) e. dom ( voln ` X ) ) |
| 114 |
6 113
|
eqeltrid |
|- ( ph -> I e. dom ( voln ` X ) ) |
| 115 |
9 98 101 109 114
|
meassre |
|- ( ph -> ( ( voln ` X ) ` I ) e. RR ) |
| 116 |
9
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( voln ` X ) e. Meas ) |
| 117 |
79 27
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) e. dom ( voln ` X ) ) |
| 118 |
114
|
adantr |
|- ( ( ph /\ n e. NN ) -> I e. dom ( voln ` X ) ) |
| 119 |
55 100
|
sselid |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR* ) |
| 120 |
119
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR* ) |
| 121 |
60
|
rpreccld |
|- ( n e. NN -> ( 1 / n ) e. RR+ ) |
| 122 |
121
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR+ ) |
| 123 |
15 122
|
ltaddrpd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) < ( ( A ` k ) + ( 1 / n ) ) ) |
| 124 |
|
icossioo |
|- ( ( ( ( A ` k ) e. RR* /\ ( B ` k ) e. RR* ) /\ ( ( A ` k ) < ( ( A ` k ) + ( 1 / n ) ) /\ ( B ` k ) <_ ( B ` k ) ) ) -> ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) C_ ( ( A ` k ) (,) ( B ` k ) ) ) |
| 125 |
120 58 123 73 124
|
syl22anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) C_ ( ( A ` k ) (,) ( B ` k ) ) ) |
| 126 |
29 125
|
ixpssixp |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) |
| 127 |
68
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) = ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) ) |
| 128 |
127
|
ixpeq2dva |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) = X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) ) |
| 129 |
79 128
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) ) |
| 130 |
6
|
a1i |
|- ( ( ph /\ n e. NN ) -> I = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) |
| 131 |
129 130
|
sseq12d |
|- ( ( ph /\ n e. NN ) -> ( ( D ` n ) C_ I <-> X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) ) |
| 132 |
126 131
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) C_ I ) |
| 133 |
116 13 117 118 132
|
meassle |
|- ( ( ph /\ n e. NN ) -> ( ( voln ` X ) ` ( D ` n ) ) <_ ( ( voln ` X ) ` I ) ) |
| 134 |
|
eqid |
|- ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) |
| 135 |
9 10 11 28 97 115 133 134
|
meaiuninc2 |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` U_ n e. NN ( D ` n ) ) ) |
| 136 |
99 1 100 57
|
iunhoiioo |
|- ( ph -> U_ n e. NN X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) |
| 137 |
129
|
iuneq2dv |
|- ( ph -> U_ n e. NN ( D ` n ) = U_ n e. NN X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) ) |
| 138 |
136 137 102
|
3eqtr4d |
|- ( ph -> U_ n e. NN ( D ` n ) = I ) |
| 139 |
138
|
eqcomd |
|- ( ph -> I = U_ n e. NN ( D ` n ) ) |
| 140 |
139
|
fveq2d |
|- ( ph -> ( ( voln ` X ) ` I ) = ( ( voln ` X ) ` U_ n e. NN ( D ` n ) ) ) |
| 141 |
140
|
eqcomd |
|- ( ph -> ( ( voln ` X ) ` U_ n e. NN ( D ` n ) ) = ( ( voln ` X ) ` I ) ) |
| 142 |
135 141
|
breqtrd |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` I ) ) |
| 143 |
|
2fveq3 |
|- ( n = m -> ( ( voln ` X ) ` ( D ` n ) ) = ( ( voln ` X ) ` ( D ` m ) ) ) |
| 144 |
143
|
cbvmptv |
|- ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) |
| 145 |
144
|
a1i |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) ) |
| 146 |
144
|
eqcomi |
|- ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) |
| 147 |
|
eqcom |
|- ( n = m <-> m = n ) |
| 148 |
147
|
imbi1i |
|- ( ( n = m -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) <-> ( m = n -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) ) |
| 149 |
|
eqcom |
|- ( ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) <-> ( ( C ` m ) ` k ) = ( ( C ` n ) ` k ) ) |
| 150 |
149
|
imbi2i |
|- ( ( m = n -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) <-> ( m = n -> ( ( C ` m ) ` k ) = ( ( C ` n ) ` k ) ) ) |
| 151 |
148 150
|
bitri |
|- ( ( n = m -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) <-> ( m = n -> ( ( C ` m ) ` k ) = ( ( C ` n ) ` k ) ) ) |
| 152 |
81 151
|
mpbi |
|- ( m = n -> ( ( C ` m ) ` k ) = ( ( C ` n ) ` k ) ) |
| 153 |
152
|
oveq2d |
|- ( m = n -> ( ( B ` k ) - ( ( C ` m ) ` k ) ) = ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) |
| 154 |
153
|
prodeq2ad |
|- ( m = n -> prod_ k e. X ( ( B ` k ) - ( ( C ` m ) ` k ) ) = prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) |
| 155 |
154
|
cbvmptv |
|- ( m e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` m ) ` k ) ) ) = ( n e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) |
| 156 |
|
eqid |
|- inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) = inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) |
| 157 |
|
eqid |
|- ( ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) + 1 ) = ( ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) + 1 ) |
| 158 |
|
fveq2 |
|- ( j = k -> ( B ` j ) = ( B ` k ) ) |
| 159 |
|
fveq2 |
|- ( j = k -> ( A ` j ) = ( A ` k ) ) |
| 160 |
158 159
|
oveq12d |
|- ( j = k -> ( ( B ` j ) - ( A ` j ) ) = ( ( B ` k ) - ( A ` k ) ) ) |
| 161 |
160
|
cbvmptv |
|- ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) = ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) |
| 162 |
161
|
rneqi |
|- ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) = ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) |
| 163 |
162
|
infeq1i |
|- inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) = inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) |
| 164 |
163
|
oveq2i |
|- ( 1 / inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) ) = ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) |
| 165 |
164
|
fveq2i |
|- ( |_ ` ( 1 / inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) ) ) = ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) |
| 166 |
165
|
oveq1i |
|- ( ( |_ ` ( 1 / inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) ) ) + 1 ) = ( ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) + 1 ) |
| 167 |
166
|
fveq2i |
|- ( ZZ>= ` ( ( |_ ` ( 1 / inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) ) ) + 1 ) ) = ( ZZ>= ` ( ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) + 1 ) ) |
| 168 |
1 2 3 4 5 7 8 146 155 156 157 167
|
vonioolem1 |
|- ( ph -> ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
| 169 |
145 168
|
eqbrtrd |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
| 170 |
|
climuni |
|- ( ( ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` I ) /\ ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
| 171 |
142 169 170
|
syl2anc |
|- ( ph -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |