| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonioolem2.x |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | vonioolem2.a |  |-  ( ph -> A : X --> RR ) | 
						
							| 3 |  | vonioolem2.b |  |-  ( ph -> B : X --> RR ) | 
						
							| 4 |  | vonioolem2.n |  |-  ( ph -> X =/= (/) ) | 
						
							| 5 |  | vonioolem2.t |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) < ( B ` k ) ) | 
						
							| 6 |  | vonioolem2.i |  |-  I = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) | 
						
							| 7 |  | vonioolem2.c |  |-  C = ( n e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) | 
						
							| 8 |  | vonioolem2.d |  |-  D = ( n e. NN |-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 9 | 1 | vonmea |  |-  ( ph -> ( voln ` X ) e. Meas ) | 
						
							| 10 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 11 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 12 | 1 | adantr |  |-  ( ( ph /\ n e. NN ) -> X e. Fin ) | 
						
							| 13 |  | eqid |  |-  dom ( voln ` X ) = dom ( voln ` X ) | 
						
							| 14 | 2 | adantr |  |-  ( ( ph /\ n e. NN ) -> A : X --> RR ) | 
						
							| 15 | 14 | ffvelcdmda |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR ) | 
						
							| 16 |  | nnrecre |  |-  ( n e. NN -> ( 1 / n ) e. RR ) | 
						
							| 17 | 16 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR ) | 
						
							| 18 | 15 17 | readdcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / n ) ) e. RR ) | 
						
							| 19 | 18 | fmpttd |  |-  ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) : X --> RR ) | 
						
							| 20 | 7 | a1i |  |-  ( ph -> C = ( n e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) ) | 
						
							| 21 | 1 | mptexd |  |-  ( ph -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) e. _V ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) e. _V ) | 
						
							| 23 | 20 22 | fvmpt2d |  |-  ( ( ph /\ n e. NN ) -> ( C ` n ) = ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) | 
						
							| 24 | 23 | feq1d |  |-  ( ( ph /\ n e. NN ) -> ( ( C ` n ) : X --> RR <-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) : X --> RR ) ) | 
						
							| 25 | 19 24 | mpbird |  |-  ( ( ph /\ n e. NN ) -> ( C ` n ) : X --> RR ) | 
						
							| 26 | 3 | adantr |  |-  ( ( ph /\ n e. NN ) -> B : X --> RR ) | 
						
							| 27 | 12 13 25 26 | hoimbl |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) e. dom ( voln ` X ) ) | 
						
							| 28 | 27 8 | fmptd |  |-  ( ph -> D : NN --> dom ( voln ` X ) ) | 
						
							| 29 |  | nfv |  |-  F/ k ( ph /\ n e. NN ) | 
						
							| 30 |  | oveq2 |  |-  ( n = m -> ( 1 / n ) = ( 1 / m ) ) | 
						
							| 31 | 30 | oveq2d |  |-  ( n = m -> ( ( A ` k ) + ( 1 / n ) ) = ( ( A ` k ) + ( 1 / m ) ) ) | 
						
							| 32 | 31 | mpteq2dv |  |-  ( n = m -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) = ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) ) | 
						
							| 33 | 32 | cbvmptv |  |-  ( n e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) = ( m e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) ) | 
						
							| 34 | 7 33 | eqtri |  |-  C = ( m e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) ) | 
						
							| 35 |  | oveq2 |  |-  ( m = ( n + 1 ) -> ( 1 / m ) = ( 1 / ( n + 1 ) ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( m = ( n + 1 ) -> ( ( A ` k ) + ( 1 / m ) ) = ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) | 
						
							| 37 | 36 | mpteq2dv |  |-  ( m = ( n + 1 ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) = ( k e. X |-> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) ) | 
						
							| 38 |  | simpr |  |-  ( ( ph /\ n e. NN ) -> n e. NN ) | 
						
							| 39 | 38 | peano2nnd |  |-  ( ( ph /\ n e. NN ) -> ( n + 1 ) e. NN ) | 
						
							| 40 | 12 | mptexd |  |-  ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) e. _V ) | 
						
							| 41 | 34 37 39 40 | fvmptd3 |  |-  ( ( ph /\ n e. NN ) -> ( C ` ( n + 1 ) ) = ( k e. X |-> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) ) | 
						
							| 42 |  | ovexd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) e. _V ) | 
						
							| 43 | 41 42 | fvmpt2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) = ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) | 
						
							| 44 |  | 1red |  |-  ( n e. NN -> 1 e. RR ) | 
						
							| 45 |  | nnre |  |-  ( n e. NN -> n e. RR ) | 
						
							| 46 | 45 44 | readdcld |  |-  ( n e. NN -> ( n + 1 ) e. RR ) | 
						
							| 47 |  | peano2nn |  |-  ( n e. NN -> ( n + 1 ) e. NN ) | 
						
							| 48 |  | nnne0 |  |-  ( ( n + 1 ) e. NN -> ( n + 1 ) =/= 0 ) | 
						
							| 49 | 47 48 | syl |  |-  ( n e. NN -> ( n + 1 ) =/= 0 ) | 
						
							| 50 | 44 46 49 | redivcld |  |-  ( n e. NN -> ( 1 / ( n + 1 ) ) e. RR ) | 
						
							| 51 | 50 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / ( n + 1 ) ) e. RR ) | 
						
							| 52 | 15 51 | readdcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) e. RR ) | 
						
							| 53 | 43 52 | eqeltrd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) e. RR ) | 
						
							| 54 | 53 | rexrd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) e. RR* ) | 
						
							| 55 |  | ressxr |  |-  RR C_ RR* | 
						
							| 56 | 3 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) | 
						
							| 57 | 55 56 | sselid |  |-  ( ( ph /\ k e. X ) -> ( B ` k ) e. RR* ) | 
						
							| 58 | 57 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR* ) | 
						
							| 59 | 45 | ltp1d |  |-  ( n e. NN -> n < ( n + 1 ) ) | 
						
							| 60 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 61 | 47 | nnrpd |  |-  ( n e. NN -> ( n + 1 ) e. RR+ ) | 
						
							| 62 | 60 61 | ltrecd |  |-  ( n e. NN -> ( n < ( n + 1 ) <-> ( 1 / ( n + 1 ) ) < ( 1 / n ) ) ) | 
						
							| 63 | 59 62 | mpbid |  |-  ( n e. NN -> ( 1 / ( n + 1 ) ) < ( 1 / n ) ) | 
						
							| 64 | 50 16 63 | ltled |  |-  ( n e. NN -> ( 1 / ( n + 1 ) ) <_ ( 1 / n ) ) | 
						
							| 65 | 64 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / ( n + 1 ) ) <_ ( 1 / n ) ) | 
						
							| 66 | 51 17 15 65 | leadd2dd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) <_ ( ( A ` k ) + ( 1 / n ) ) ) | 
						
							| 67 |  | ovexd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / n ) ) e. _V ) | 
						
							| 68 | 23 67 | fvmpt2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) = ( ( A ` k ) + ( 1 / n ) ) ) | 
						
							| 69 | 43 68 | breq12d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) <-> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) <_ ( ( A ` k ) + ( 1 / n ) ) ) ) | 
						
							| 70 | 66 69 | mpbird |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) ) | 
						
							| 71 | 56 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR ) | 
						
							| 72 |  | eqidd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) = ( B ` k ) ) | 
						
							| 73 | 71 72 | eqled |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) <_ ( B ` k ) ) | 
						
							| 74 |  | icossico |  |-  ( ( ( ( ( C ` ( n + 1 ) ) ` k ) e. RR* /\ ( B ` k ) e. RR* ) /\ ( ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) /\ ( B ` k ) <_ ( B ` k ) ) ) -> ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) C_ ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 75 | 54 58 70 73 74 | syl22anc |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) C_ ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 76 | 29 75 | ixpssixp |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) C_ X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 77 | 8 | a1i |  |-  ( ph -> D = ( n e. NN |-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 78 | 27 | elexd |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) e. _V ) | 
						
							| 79 | 77 78 | fvmpt2d |  |-  ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 80 |  | fveq2 |  |-  ( n = m -> ( C ` n ) = ( C ` m ) ) | 
						
							| 81 | 80 | fveq1d |  |-  ( n = m -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) | 
						
							| 82 | 81 | oveq1d |  |-  ( n = m -> ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) = ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 83 | 82 | ixpeq2dv |  |-  ( n = m -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) = X_ k e. X ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 84 | 83 | cbvmptv |  |-  ( n e. NN |-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) = ( m e. NN |-> X_ k e. X ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 85 | 8 84 | eqtri |  |-  D = ( m e. NN |-> X_ k e. X ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 86 |  | fveq2 |  |-  ( m = ( n + 1 ) -> ( C ` m ) = ( C ` ( n + 1 ) ) ) | 
						
							| 87 | 86 | fveq1d |  |-  ( m = ( n + 1 ) -> ( ( C ` m ) ` k ) = ( ( C ` ( n + 1 ) ) ` k ) ) | 
						
							| 88 | 87 | oveq1d |  |-  ( m = ( n + 1 ) -> ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) = ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 89 | 88 | ixpeq2dv |  |-  ( m = ( n + 1 ) -> X_ k e. X ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) = X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 90 |  | ovex |  |-  ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V | 
						
							| 91 | 90 | rgenw |  |-  A. k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V | 
						
							| 92 |  | ixpexg |  |-  ( A. k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V -> X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V ) | 
						
							| 93 | 91 92 | ax-mp |  |-  X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V | 
						
							| 94 | 93 | a1i |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V ) | 
						
							| 95 | 85 89 39 94 | fvmptd3 |  |-  ( ( ph /\ n e. NN ) -> ( D ` ( n + 1 ) ) = X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) | 
						
							| 96 | 79 95 | sseq12d |  |-  ( ( ph /\ n e. NN ) -> ( ( D ` n ) C_ ( D ` ( n + 1 ) ) <-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) C_ X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) ) | 
						
							| 97 | 76 96 | mpbird |  |-  ( ( ph /\ n e. NN ) -> ( D ` n ) C_ ( D ` ( n + 1 ) ) ) | 
						
							| 98 | 1 13 2 3 | hoimbl |  |-  ( ph -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) e. dom ( voln ` X ) ) | 
						
							| 99 |  | nfv |  |-  F/ k ph | 
						
							| 100 | 2 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) | 
						
							| 101 | 99 1 100 56 | vonhoire |  |-  ( ph -> ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) | 
						
							| 102 | 6 | a1i |  |-  ( ph -> I = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) | 
						
							| 103 |  | nftru |  |-  F/ k T. | 
						
							| 104 |  | ioossico |  |-  ( ( A ` k ) (,) ( B ` k ) ) C_ ( ( A ` k ) [,) ( B ` k ) ) | 
						
							| 105 | 104 | a1i |  |-  ( ( T. /\ k e. X ) -> ( ( A ` k ) (,) ( B ` k ) ) C_ ( ( A ` k ) [,) ( B ` k ) ) ) | 
						
							| 106 | 103 105 | ixpssixp |  |-  ( T. -> X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) | 
						
							| 107 | 106 | mptru |  |-  X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) | 
						
							| 108 | 107 | a1i |  |-  ( ph -> X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) | 
						
							| 109 | 102 108 | eqsstrd |  |-  ( ph -> I C_ X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) | 
						
							| 110 | 55 | a1i |  |-  ( ph -> RR C_ RR* ) | 
						
							| 111 | 2 110 | fssd |  |-  ( ph -> A : X --> RR* ) | 
						
							| 112 | 3 110 | fssd |  |-  ( ph -> B : X --> RR* ) | 
						
							| 113 | 1 13 111 112 | ioovonmbl |  |-  ( ph -> X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) e. dom ( voln ` X ) ) | 
						
							| 114 | 6 113 | eqeltrid |  |-  ( ph -> I e. dom ( voln ` X ) ) | 
						
							| 115 | 9 98 101 109 114 | meassre |  |-  ( ph -> ( ( voln ` X ) ` I ) e. RR ) | 
						
							| 116 | 9 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( voln ` X ) e. Meas ) | 
						
							| 117 | 79 27 | eqeltrd |  |-  ( ( ph /\ n e. NN ) -> ( D ` n ) e. dom ( voln ` X ) ) | 
						
							| 118 | 114 | adantr |  |-  ( ( ph /\ n e. NN ) -> I e. dom ( voln ` X ) ) | 
						
							| 119 | 55 100 | sselid |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) e. RR* ) | 
						
							| 120 | 119 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR* ) | 
						
							| 121 | 60 | rpreccld |  |-  ( n e. NN -> ( 1 / n ) e. RR+ ) | 
						
							| 122 | 121 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR+ ) | 
						
							| 123 | 15 122 | ltaddrpd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) < ( ( A ` k ) + ( 1 / n ) ) ) | 
						
							| 124 |  | icossioo |  |-  ( ( ( ( A ` k ) e. RR* /\ ( B ` k ) e. RR* ) /\ ( ( A ` k ) < ( ( A ` k ) + ( 1 / n ) ) /\ ( B ` k ) <_ ( B ` k ) ) ) -> ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) C_ ( ( A ` k ) (,) ( B ` k ) ) ) | 
						
							| 125 | 120 58 123 73 124 | syl22anc |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) C_ ( ( A ` k ) (,) ( B ` k ) ) ) | 
						
							| 126 | 29 125 | ixpssixp |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) | 
						
							| 127 | 68 | oveq1d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) = ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) ) | 
						
							| 128 | 127 | ixpeq2dva |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) = X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) ) | 
						
							| 129 | 79 128 | eqtrd |  |-  ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) ) | 
						
							| 130 | 6 | a1i |  |-  ( ( ph /\ n e. NN ) -> I = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) | 
						
							| 131 | 129 130 | sseq12d |  |-  ( ( ph /\ n e. NN ) -> ( ( D ` n ) C_ I <-> X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) ) | 
						
							| 132 | 126 131 | mpbird |  |-  ( ( ph /\ n e. NN ) -> ( D ` n ) C_ I ) | 
						
							| 133 | 116 13 117 118 132 | meassle |  |-  ( ( ph /\ n e. NN ) -> ( ( voln ` X ) ` ( D ` n ) ) <_ ( ( voln ` X ) ` I ) ) | 
						
							| 134 |  | eqid |  |-  ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) | 
						
							| 135 | 9 10 11 28 97 115 133 134 | meaiuninc2 |  |-  ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` U_ n e. NN ( D ` n ) ) ) | 
						
							| 136 | 99 1 100 57 | iunhoiioo |  |-  ( ph -> U_ n e. NN X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) | 
						
							| 137 | 129 | iuneq2dv |  |-  ( ph -> U_ n e. NN ( D ` n ) = U_ n e. NN X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) ) | 
						
							| 138 | 136 137 102 | 3eqtr4d |  |-  ( ph -> U_ n e. NN ( D ` n ) = I ) | 
						
							| 139 | 138 | eqcomd |  |-  ( ph -> I = U_ n e. NN ( D ` n ) ) | 
						
							| 140 | 139 | fveq2d |  |-  ( ph -> ( ( voln ` X ) ` I ) = ( ( voln ` X ) ` U_ n e. NN ( D ` n ) ) ) | 
						
							| 141 | 140 | eqcomd |  |-  ( ph -> ( ( voln ` X ) ` U_ n e. NN ( D ` n ) ) = ( ( voln ` X ) ` I ) ) | 
						
							| 142 | 135 141 | breqtrd |  |-  ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` I ) ) | 
						
							| 143 |  | 2fveq3 |  |-  ( n = m -> ( ( voln ` X ) ` ( D ` n ) ) = ( ( voln ` X ) ` ( D ` m ) ) ) | 
						
							| 144 | 143 | cbvmptv |  |-  ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) | 
						
							| 145 | 144 | a1i |  |-  ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) ) | 
						
							| 146 | 144 | eqcomi |  |-  ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) | 
						
							| 147 |  | eqcom |  |-  ( n = m <-> m = n ) | 
						
							| 148 | 147 | imbi1i |  |-  ( ( n = m -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) <-> ( m = n -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) ) | 
						
							| 149 |  | eqcom |  |-  ( ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) <-> ( ( C ` m ) ` k ) = ( ( C ` n ) ` k ) ) | 
						
							| 150 | 149 | imbi2i |  |-  ( ( m = n -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) <-> ( m = n -> ( ( C ` m ) ` k ) = ( ( C ` n ) ` k ) ) ) | 
						
							| 151 | 148 150 | bitri |  |-  ( ( n = m -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) <-> ( m = n -> ( ( C ` m ) ` k ) = ( ( C ` n ) ` k ) ) ) | 
						
							| 152 | 81 151 | mpbi |  |-  ( m = n -> ( ( C ` m ) ` k ) = ( ( C ` n ) ` k ) ) | 
						
							| 153 | 152 | oveq2d |  |-  ( m = n -> ( ( B ` k ) - ( ( C ` m ) ` k ) ) = ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) | 
						
							| 154 | 153 | prodeq2ad |  |-  ( m = n -> prod_ k e. X ( ( B ` k ) - ( ( C ` m ) ` k ) ) = prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) | 
						
							| 155 | 154 | cbvmptv |  |-  ( m e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` m ) ` k ) ) ) = ( n e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) | 
						
							| 156 |  | eqid |  |-  inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) = inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) | 
						
							| 157 |  | eqid |  |-  ( ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) + 1 ) = ( ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) + 1 ) | 
						
							| 158 |  | fveq2 |  |-  ( j = k -> ( B ` j ) = ( B ` k ) ) | 
						
							| 159 |  | fveq2 |  |-  ( j = k -> ( A ` j ) = ( A ` k ) ) | 
						
							| 160 | 158 159 | oveq12d |  |-  ( j = k -> ( ( B ` j ) - ( A ` j ) ) = ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 161 | 160 | cbvmptv |  |-  ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) = ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 162 | 161 | rneqi |  |-  ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) = ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 163 | 162 | infeq1i |  |-  inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) = inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) | 
						
							| 164 | 163 | oveq2i |  |-  ( 1 / inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) ) = ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) | 
						
							| 165 | 164 | fveq2i |  |-  ( |_ ` ( 1 / inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) ) ) = ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) | 
						
							| 166 | 165 | oveq1i |  |-  ( ( |_ ` ( 1 / inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) ) ) + 1 ) = ( ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) + 1 ) | 
						
							| 167 | 166 | fveq2i |  |-  ( ZZ>= ` ( ( |_ ` ( 1 / inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) ) ) + 1 ) ) = ( ZZ>= ` ( ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) + 1 ) ) | 
						
							| 168 | 1 2 3 4 5 7 8 146 155 156 157 167 | vonioolem1 |  |-  ( ph -> ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 169 | 145 168 | eqbrtrd |  |-  ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 170 |  | climuni |  |-  ( ( ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` I ) /\ ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 171 | 142 169 170 | syl2anc |  |-  ( ph -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |