Step |
Hyp |
Ref |
Expression |
1 |
|
vonioolem2.x |
|- ( ph -> X e. Fin ) |
2 |
|
vonioolem2.a |
|- ( ph -> A : X --> RR ) |
3 |
|
vonioolem2.b |
|- ( ph -> B : X --> RR ) |
4 |
|
vonioolem2.n |
|- ( ph -> X =/= (/) ) |
5 |
|
vonioolem2.t |
|- ( ( ph /\ k e. X ) -> ( A ` k ) < ( B ` k ) ) |
6 |
|
vonioolem2.i |
|- I = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) |
7 |
|
vonioolem2.c |
|- C = ( n e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) |
8 |
|
vonioolem2.d |
|- D = ( n e. NN |-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) |
9 |
1
|
vonmea |
|- ( ph -> ( voln ` X ) e. Meas ) |
10 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
11 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
12 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. Fin ) |
13 |
|
eqid |
|- dom ( voln ` X ) = dom ( voln ` X ) |
14 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> A : X --> RR ) |
15 |
14
|
ffvelrnda |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR ) |
16 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
17 |
16
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR ) |
18 |
15 17
|
readdcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / n ) ) e. RR ) |
19 |
18
|
fmpttd |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) : X --> RR ) |
20 |
7
|
a1i |
|- ( ph -> C = ( n e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) ) |
21 |
1
|
mptexd |
|- ( ph -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) e. _V ) |
22 |
21
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) e. _V ) |
23 |
20 22
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) = ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) |
24 |
23
|
feq1d |
|- ( ( ph /\ n e. NN ) -> ( ( C ` n ) : X --> RR <-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) : X --> RR ) ) |
25 |
19 24
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) : X --> RR ) |
26 |
3
|
adantr |
|- ( ( ph /\ n e. NN ) -> B : X --> RR ) |
27 |
12 13 25 26
|
hoimbl |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) e. dom ( voln ` X ) ) |
28 |
27 8
|
fmptd |
|- ( ph -> D : NN --> dom ( voln ` X ) ) |
29 |
|
nfv |
|- F/ k ( ph /\ n e. NN ) |
30 |
|
oveq2 |
|- ( n = m -> ( 1 / n ) = ( 1 / m ) ) |
31 |
30
|
oveq2d |
|- ( n = m -> ( ( A ` k ) + ( 1 / n ) ) = ( ( A ` k ) + ( 1 / m ) ) ) |
32 |
31
|
mpteq2dv |
|- ( n = m -> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) = ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) ) |
33 |
32
|
cbvmptv |
|- ( n e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) = ( m e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) ) |
34 |
7 33
|
eqtri |
|- C = ( m e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) ) |
35 |
|
oveq2 |
|- ( m = ( n + 1 ) -> ( 1 / m ) = ( 1 / ( n + 1 ) ) ) |
36 |
35
|
oveq2d |
|- ( m = ( n + 1 ) -> ( ( A ` k ) + ( 1 / m ) ) = ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) |
37 |
36
|
mpteq2dv |
|- ( m = ( n + 1 ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) = ( k e. X |-> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) ) |
38 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
39 |
38
|
peano2nnd |
|- ( ( ph /\ n e. NN ) -> ( n + 1 ) e. NN ) |
40 |
12
|
mptexd |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) e. _V ) |
41 |
34 37 39 40
|
fvmptd3 |
|- ( ( ph /\ n e. NN ) -> ( C ` ( n + 1 ) ) = ( k e. X |-> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) ) |
42 |
|
ovexd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) e. _V ) |
43 |
41 42
|
fvmpt2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) = ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) ) |
44 |
|
1red |
|- ( n e. NN -> 1 e. RR ) |
45 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
46 |
45 44
|
readdcld |
|- ( n e. NN -> ( n + 1 ) e. RR ) |
47 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
48 |
|
nnne0 |
|- ( ( n + 1 ) e. NN -> ( n + 1 ) =/= 0 ) |
49 |
47 48
|
syl |
|- ( n e. NN -> ( n + 1 ) =/= 0 ) |
50 |
44 46 49
|
redivcld |
|- ( n e. NN -> ( 1 / ( n + 1 ) ) e. RR ) |
51 |
50
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / ( n + 1 ) ) e. RR ) |
52 |
15 51
|
readdcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) e. RR ) |
53 |
43 52
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) e. RR ) |
54 |
53
|
rexrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) e. RR* ) |
55 |
|
ressxr |
|- RR C_ RR* |
56 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
57 |
55 56
|
sseldi |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR* ) |
58 |
57
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR* ) |
59 |
45
|
ltp1d |
|- ( n e. NN -> n < ( n + 1 ) ) |
60 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
61 |
47
|
nnrpd |
|- ( n e. NN -> ( n + 1 ) e. RR+ ) |
62 |
60 61
|
ltrecd |
|- ( n e. NN -> ( n < ( n + 1 ) <-> ( 1 / ( n + 1 ) ) < ( 1 / n ) ) ) |
63 |
59 62
|
mpbid |
|- ( n e. NN -> ( 1 / ( n + 1 ) ) < ( 1 / n ) ) |
64 |
50 16 63
|
ltled |
|- ( n e. NN -> ( 1 / ( n + 1 ) ) <_ ( 1 / n ) ) |
65 |
64
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / ( n + 1 ) ) <_ ( 1 / n ) ) |
66 |
51 17 15 65
|
leadd2dd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) <_ ( ( A ` k ) + ( 1 / n ) ) ) |
67 |
|
ovexd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A ` k ) + ( 1 / n ) ) e. _V ) |
68 |
23 67
|
fvmpt2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) = ( ( A ` k ) + ( 1 / n ) ) ) |
69 |
43 68
|
breq12d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) <-> ( ( A ` k ) + ( 1 / ( n + 1 ) ) ) <_ ( ( A ` k ) + ( 1 / n ) ) ) ) |
70 |
66 69
|
mpbird |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) ) |
71 |
56
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR ) |
72 |
|
eqidd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) = ( B ` k ) ) |
73 |
71 72
|
eqled |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) <_ ( B ` k ) ) |
74 |
|
icossico |
|- ( ( ( ( ( C ` ( n + 1 ) ) ` k ) e. RR* /\ ( B ` k ) e. RR* ) /\ ( ( ( C ` ( n + 1 ) ) ` k ) <_ ( ( C ` n ) ` k ) /\ ( B ` k ) <_ ( B ` k ) ) ) -> ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) C_ ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) |
75 |
54 58 70 73 74
|
syl22anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) C_ ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) |
76 |
29 75
|
ixpssixp |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) C_ X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) |
77 |
8
|
a1i |
|- ( ph -> D = ( n e. NN |-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) ) |
78 |
27
|
elexd |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) e. _V ) |
79 |
77 78
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) |
80 |
|
fveq2 |
|- ( n = m -> ( C ` n ) = ( C ` m ) ) |
81 |
80
|
fveq1d |
|- ( n = m -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) |
82 |
81
|
oveq1d |
|- ( n = m -> ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) = ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) ) |
83 |
82
|
ixpeq2dv |
|- ( n = m -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) = X_ k e. X ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) ) |
84 |
83
|
cbvmptv |
|- ( n e. NN |-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) ) = ( m e. NN |-> X_ k e. X ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) ) |
85 |
8 84
|
eqtri |
|- D = ( m e. NN |-> X_ k e. X ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) ) |
86 |
|
fveq2 |
|- ( m = ( n + 1 ) -> ( C ` m ) = ( C ` ( n + 1 ) ) ) |
87 |
86
|
fveq1d |
|- ( m = ( n + 1 ) -> ( ( C ` m ) ` k ) = ( ( C ` ( n + 1 ) ) ` k ) ) |
88 |
87
|
oveq1d |
|- ( m = ( n + 1 ) -> ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) = ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) |
89 |
88
|
ixpeq2dv |
|- ( m = ( n + 1 ) -> X_ k e. X ( ( ( C ` m ) ` k ) [,) ( B ` k ) ) = X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) |
90 |
|
ovex |
|- ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V |
91 |
90
|
rgenw |
|- A. k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V |
92 |
|
ixpexg |
|- ( A. k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V -> X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V ) |
93 |
91 92
|
ax-mp |
|- X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V |
94 |
93
|
a1i |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) e. _V ) |
95 |
85 89 39 94
|
fvmptd3 |
|- ( ( ph /\ n e. NN ) -> ( D ` ( n + 1 ) ) = X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) |
96 |
79 95
|
sseq12d |
|- ( ( ph /\ n e. NN ) -> ( ( D ` n ) C_ ( D ` ( n + 1 ) ) <-> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) C_ X_ k e. X ( ( ( C ` ( n + 1 ) ) ` k ) [,) ( B ` k ) ) ) ) |
97 |
76 96
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) C_ ( D ` ( n + 1 ) ) ) |
98 |
1 13 2 3
|
hoimbl |
|- ( ph -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) e. dom ( voln ` X ) ) |
99 |
|
nfv |
|- F/ k ph |
100 |
2
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
101 |
99 1 100 56
|
vonhoire |
|- ( ph -> ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
102 |
6
|
a1i |
|- ( ph -> I = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) |
103 |
|
nftru |
|- F/ k T. |
104 |
|
ioossico |
|- ( ( A ` k ) (,) ( B ` k ) ) C_ ( ( A ` k ) [,) ( B ` k ) ) |
105 |
104
|
a1i |
|- ( ( T. /\ k e. X ) -> ( ( A ` k ) (,) ( B ` k ) ) C_ ( ( A ` k ) [,) ( B ` k ) ) ) |
106 |
103 105
|
ixpssixp |
|- ( T. -> X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
107 |
106
|
mptru |
|- X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) |
108 |
107
|
a1i |
|- ( ph -> X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
109 |
102 108
|
eqsstrd |
|- ( ph -> I C_ X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |
110 |
55
|
a1i |
|- ( ph -> RR C_ RR* ) |
111 |
2 110
|
fssd |
|- ( ph -> A : X --> RR* ) |
112 |
3 110
|
fssd |
|- ( ph -> B : X --> RR* ) |
113 |
1 13 111 112
|
ioovonmbl |
|- ( ph -> X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) e. dom ( voln ` X ) ) |
114 |
6 113
|
eqeltrid |
|- ( ph -> I e. dom ( voln ` X ) ) |
115 |
9 98 101 109 114
|
meassre |
|- ( ph -> ( ( voln ` X ) ` I ) e. RR ) |
116 |
9
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( voln ` X ) e. Meas ) |
117 |
79 27
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) e. dom ( voln ` X ) ) |
118 |
114
|
adantr |
|- ( ( ph /\ n e. NN ) -> I e. dom ( voln ` X ) ) |
119 |
55 100
|
sseldi |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR* ) |
120 |
119
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR* ) |
121 |
60
|
rpreccld |
|- ( n e. NN -> ( 1 / n ) e. RR+ ) |
122 |
121
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR+ ) |
123 |
15 122
|
ltaddrpd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) < ( ( A ` k ) + ( 1 / n ) ) ) |
124 |
|
icossioo |
|- ( ( ( ( A ` k ) e. RR* /\ ( B ` k ) e. RR* ) /\ ( ( A ` k ) < ( ( A ` k ) + ( 1 / n ) ) /\ ( B ` k ) <_ ( B ` k ) ) ) -> ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) C_ ( ( A ` k ) (,) ( B ` k ) ) ) |
125 |
120 58 123 73 124
|
syl22anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) C_ ( ( A ` k ) (,) ( B ` k ) ) ) |
126 |
29 125
|
ixpssixp |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) |
127 |
68
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) = ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) ) |
128 |
127
|
ixpeq2dva |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( ( C ` n ) ` k ) [,) ( B ` k ) ) = X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) ) |
129 |
79 128
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) ) |
130 |
6
|
a1i |
|- ( ( ph /\ n e. NN ) -> I = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) |
131 |
129 130
|
sseq12d |
|- ( ( ph /\ n e. NN ) -> ( ( D ` n ) C_ I <-> X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) C_ X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) ) |
132 |
126 131
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) C_ I ) |
133 |
116 13 117 118 132
|
meassle |
|- ( ( ph /\ n e. NN ) -> ( ( voln ` X ) ` ( D ` n ) ) <_ ( ( voln ` X ) ` I ) ) |
134 |
|
eqid |
|- ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) |
135 |
9 10 11 28 97 115 133 134
|
meaiuninc2 |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` U_ n e. NN ( D ` n ) ) ) |
136 |
99 1 100 57
|
iunhoiioo |
|- ( ph -> U_ n e. NN X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) |
137 |
129
|
iuneq2dv |
|- ( ph -> U_ n e. NN ( D ` n ) = U_ n e. NN X_ k e. X ( ( ( A ` k ) + ( 1 / n ) ) [,) ( B ` k ) ) ) |
138 |
136 137 102
|
3eqtr4d |
|- ( ph -> U_ n e. NN ( D ` n ) = I ) |
139 |
138
|
eqcomd |
|- ( ph -> I = U_ n e. NN ( D ` n ) ) |
140 |
139
|
fveq2d |
|- ( ph -> ( ( voln ` X ) ` I ) = ( ( voln ` X ) ` U_ n e. NN ( D ` n ) ) ) |
141 |
140
|
eqcomd |
|- ( ph -> ( ( voln ` X ) ` U_ n e. NN ( D ` n ) ) = ( ( voln ` X ) ` I ) ) |
142 |
135 141
|
breqtrd |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` I ) ) |
143 |
|
2fveq3 |
|- ( n = m -> ( ( voln ` X ) ` ( D ` n ) ) = ( ( voln ` X ) ` ( D ` m ) ) ) |
144 |
143
|
cbvmptv |
|- ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) |
145 |
144
|
a1i |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) ) |
146 |
144
|
eqcomi |
|- ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) |
147 |
|
eqcom |
|- ( n = m <-> m = n ) |
148 |
147
|
imbi1i |
|- ( ( n = m -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) <-> ( m = n -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) ) |
149 |
|
eqcom |
|- ( ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) <-> ( ( C ` m ) ` k ) = ( ( C ` n ) ` k ) ) |
150 |
149
|
imbi2i |
|- ( ( m = n -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) <-> ( m = n -> ( ( C ` m ) ` k ) = ( ( C ` n ) ` k ) ) ) |
151 |
148 150
|
bitri |
|- ( ( n = m -> ( ( C ` n ) ` k ) = ( ( C ` m ) ` k ) ) <-> ( m = n -> ( ( C ` m ) ` k ) = ( ( C ` n ) ` k ) ) ) |
152 |
81 151
|
mpbi |
|- ( m = n -> ( ( C ` m ) ` k ) = ( ( C ` n ) ` k ) ) |
153 |
152
|
oveq2d |
|- ( m = n -> ( ( B ` k ) - ( ( C ` m ) ` k ) ) = ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) |
154 |
153
|
prodeq2ad |
|- ( m = n -> prod_ k e. X ( ( B ` k ) - ( ( C ` m ) ` k ) ) = prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) |
155 |
154
|
cbvmptv |
|- ( m e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` m ) ` k ) ) ) = ( n e. NN |-> prod_ k e. X ( ( B ` k ) - ( ( C ` n ) ` k ) ) ) |
156 |
|
eqid |
|- inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) = inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) |
157 |
|
eqid |
|- ( ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) + 1 ) = ( ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) + 1 ) |
158 |
|
fveq2 |
|- ( j = k -> ( B ` j ) = ( B ` k ) ) |
159 |
|
fveq2 |
|- ( j = k -> ( A ` j ) = ( A ` k ) ) |
160 |
158 159
|
oveq12d |
|- ( j = k -> ( ( B ` j ) - ( A ` j ) ) = ( ( B ` k ) - ( A ` k ) ) ) |
161 |
160
|
cbvmptv |
|- ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) = ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) |
162 |
161
|
rneqi |
|- ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) = ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) |
163 |
162
|
infeq1i |
|- inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) = inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) |
164 |
163
|
oveq2i |
|- ( 1 / inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) ) = ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) |
165 |
164
|
fveq2i |
|- ( |_ ` ( 1 / inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) ) ) = ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) |
166 |
165
|
oveq1i |
|- ( ( |_ ` ( 1 / inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) ) ) + 1 ) = ( ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) + 1 ) |
167 |
166
|
fveq2i |
|- ( ZZ>= ` ( ( |_ ` ( 1 / inf ( ran ( j e. X |-> ( ( B ` j ) - ( A ` j ) ) ) , RR , < ) ) ) + 1 ) ) = ( ZZ>= ` ( ( |_ ` ( 1 / inf ( ran ( k e. X |-> ( ( B ` k ) - ( A ` k ) ) ) , RR , < ) ) ) + 1 ) ) |
168 |
1 2 3 4 5 7 8 146 155 156 157 167
|
vonioolem1 |
|- ( ph -> ( m e. NN |-> ( ( voln ` X ) ` ( D ` m ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
169 |
145 168
|
eqbrtrd |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
170 |
|
climuni |
|- ( ( ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> ( ( voln ` X ) ` I ) /\ ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
171 |
142 169 170
|
syl2anc |
|- ( ph -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |