| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonioolem2.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
vonioolem2.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
| 3 |
|
vonioolem2.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
| 4 |
|
vonioolem2.n |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 5 |
|
vonioolem2.t |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
| 6 |
|
vonioolem2.i |
⊢ 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) |
| 7 |
|
vonioolem2.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
| 8 |
|
vonioolem2.d |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 9 |
1
|
vonmea |
⊢ ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas ) |
| 10 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 11 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ Fin ) |
| 13 |
|
eqid |
⊢ dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 ) |
| 14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 : 𝑋 ⟶ ℝ ) |
| 15 |
14
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
| 16 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
| 17 |
16
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 18 |
15 17
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 19 |
18
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ ) |
| 20 |
7
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) ) |
| 21 |
1
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ∈ V ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ∈ V ) |
| 23 |
20 22
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
| 24 |
23
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ↔ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ ) ) |
| 25 |
19 24
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ) |
| 26 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐵 : 𝑋 ⟶ ℝ ) |
| 27 |
12 13 25 26
|
hoimbl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) ) |
| 28 |
27 8
|
fmptd |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ dom ( voln ‘ 𝑋 ) ) |
| 29 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑛 ∈ ℕ ) |
| 30 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 / 𝑛 ) = ( 1 / 𝑚 ) ) |
| 31 |
30
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) = ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) |
| 32 |
31
|
mpteq2dv |
⊢ ( 𝑛 = 𝑚 → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) ) |
| 33 |
32
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) ) |
| 34 |
7 33
|
eqtri |
⊢ 𝐶 = ( 𝑚 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) ) |
| 35 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 1 / 𝑚 ) = ( 1 / ( 𝑛 + 1 ) ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) = ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) |
| 37 |
36
|
mpteq2dv |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) ) |
| 38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
| 39 |
38
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 40 |
12
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) ∈ V ) |
| 41 |
34 37 39 40
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ ( 𝑛 + 1 ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) ) |
| 42 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ∈ V ) |
| 43 |
41 42
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) |
| 44 |
|
1red |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) |
| 45 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
| 46 |
45 44
|
readdcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ ) |
| 47 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
| 48 |
|
nnne0 |
⊢ ( ( 𝑛 + 1 ) ∈ ℕ → ( 𝑛 + 1 ) ≠ 0 ) |
| 49 |
47 48
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ≠ 0 ) |
| 50 |
44 46 49
|
redivcld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 51 |
50
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 52 |
15 51
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 53 |
43 52
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 54 |
53
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ∈ ℝ* ) |
| 55 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 56 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 57 |
55 56
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
| 58 |
57
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
| 59 |
45
|
ltp1d |
⊢ ( 𝑛 ∈ ℕ → 𝑛 < ( 𝑛 + 1 ) ) |
| 60 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 61 |
47
|
nnrpd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ+ ) |
| 62 |
60 61
|
ltrecd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 < ( 𝑛 + 1 ) ↔ ( 1 / ( 𝑛 + 1 ) ) < ( 1 / 𝑛 ) ) ) |
| 63 |
59 62
|
mpbid |
⊢ ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) < ( 1 / 𝑛 ) ) |
| 64 |
50 16 63
|
ltled |
⊢ ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) ≤ ( 1 / 𝑛 ) ) |
| 65 |
64
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / ( 𝑛 + 1 ) ) ≤ ( 1 / 𝑛 ) ) |
| 66 |
51 17 15 65
|
leadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ≤ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
| 67 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ∈ V ) |
| 68 |
23 67
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
| 69 |
43 68
|
breq12d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ↔ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ≤ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
| 70 |
66 69
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) |
| 71 |
56
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 72 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 73 |
71 72
|
eqled |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) |
| 74 |
|
icossico |
⊢ ( ( ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ∈ ℝ* ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) ∧ ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) ) → ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 75 |
54 58 70 73 74
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 76 |
29 75
|
ixpssixp |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 77 |
8
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 78 |
27
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V ) |
| 79 |
77 78
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 80 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑚 ) ) |
| 81 |
80
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) |
| 82 |
81
|
oveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 83 |
82
|
ixpeq2dv |
⊢ ( 𝑛 = 𝑚 → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 84 |
83
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( 𝑚 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 85 |
8 84
|
eqtri |
⊢ 𝐷 = ( 𝑚 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 86 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ ( 𝑛 + 1 ) ) ) |
| 87 |
86
|
fveq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) |
| 88 |
87
|
oveq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 89 |
88
|
ixpeq2dv |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 90 |
|
ovex |
⊢ ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V |
| 91 |
90
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V |
| 92 |
|
ixpexg |
⊢ ( ∀ 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V ) |
| 93 |
91 92
|
ax-mp |
⊢ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V |
| 94 |
93
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V ) |
| 95 |
85 89 39 94
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ ( 𝑛 + 1 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 96 |
79 95
|
sseq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) ⊆ ( 𝐷 ‘ ( 𝑛 + 1 ) ) ↔ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 97 |
76 96
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ⊆ ( 𝐷 ‘ ( 𝑛 + 1 ) ) ) |
| 98 |
1 13 2 3
|
hoimbl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) ) |
| 99 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 100 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
| 101 |
99 1 100 56
|
vonhoire |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 102 |
6
|
a1i |
⊢ ( 𝜑 → 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 103 |
|
nftru |
⊢ Ⅎ 𝑘 ⊤ |
| 104 |
|
ioossico |
⊢ ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) |
| 105 |
104
|
a1i |
⊢ ( ( ⊤ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 106 |
103 105
|
ixpssixp |
⊢ ( ⊤ → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 107 |
106
|
mptru |
⊢ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) |
| 108 |
107
|
a1i |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 109 |
102 108
|
eqsstrd |
⊢ ( 𝜑 → 𝐼 ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 110 |
55
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ* ) |
| 111 |
2 110
|
fssd |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ* ) |
| 112 |
3 110
|
fssd |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ* ) |
| 113 |
1 13 111 112
|
ioovonmbl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) ) |
| 114 |
6 113
|
eqeltrid |
⊢ ( 𝜑 → 𝐼 ∈ dom ( voln ‘ 𝑋 ) ) |
| 115 |
9 98 101 109 114
|
meassre |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ∈ ℝ ) |
| 116 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( voln ‘ 𝑋 ) ∈ Meas ) |
| 117 |
79 27
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ∈ dom ( voln ‘ 𝑋 ) ) |
| 118 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐼 ∈ dom ( voln ‘ 𝑋 ) ) |
| 119 |
55 100
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ* ) |
| 120 |
119
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ* ) |
| 121 |
60
|
rpreccld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 122 |
121
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 123 |
15 122
|
ltaddrpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) < ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
| 124 |
|
icossioo |
⊢ ( ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ* ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) ∧ ( ( 𝐴 ‘ 𝑘 ) < ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) ) → ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 125 |
120 58 123 73 124
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 126 |
29 125
|
ixpssixp |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 127 |
68
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 128 |
127
|
ixpeq2dva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 129 |
79 128
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 130 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 131 |
129 130
|
sseq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) ⊆ 𝐼 ↔ X 𝑘 ∈ 𝑋 ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 132 |
126 131
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ⊆ 𝐼 ) |
| 133 |
116 13 117 118 132
|
meassle |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ≤ ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ) |
| 134 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) |
| 135 |
9 10 11 28 97 115 133 134
|
meaiuninc2 |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) ) ) |
| 136 |
99 1 100 57
|
iunhoiioo |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 137 |
129
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 138 |
136 137 102
|
3eqtr4d |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) = 𝐼 ) |
| 139 |
138
|
eqcomd |
⊢ ( 𝜑 → 𝐼 = ∪ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) ) |
| 140 |
139
|
fveq2d |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln ‘ 𝑋 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) ) ) |
| 141 |
140
|
eqcomd |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) ) = ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ) |
| 142 |
135 141
|
breqtrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ) |
| 143 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑚 → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) = ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) |
| 144 |
143
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) |
| 145 |
144
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) ) |
| 146 |
144
|
eqcomi |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) |
| 147 |
|
eqcom |
⊢ ( 𝑛 = 𝑚 ↔ 𝑚 = 𝑛 ) |
| 148 |
147
|
imbi1i |
⊢ ( ( 𝑛 = 𝑚 → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ↔ ( 𝑚 = 𝑛 → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ) |
| 149 |
|
eqcom |
⊢ ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ↔ ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) |
| 150 |
149
|
imbi2i |
⊢ ( ( 𝑚 = 𝑛 → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ↔ ( 𝑚 = 𝑛 → ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 151 |
148 150
|
bitri |
⊢ ( ( 𝑛 = 𝑚 → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ↔ ( 𝑚 = 𝑛 → ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 152 |
81 151
|
mpbi |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) |
| 153 |
152
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 154 |
153
|
prodeq2ad |
⊢ ( 𝑚 = 𝑛 → ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 155 |
154
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ) = ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 156 |
|
eqid |
⊢ inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) = inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) |
| 157 |
|
eqid |
⊢ ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ) ) + 1 ) = ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ) ) + 1 ) |
| 158 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐵 ‘ 𝑗 ) = ( 𝐵 ‘ 𝑘 ) ) |
| 159 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 ‘ 𝑗 ) = ( 𝐴 ‘ 𝑘 ) ) |
| 160 |
158 159
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 161 |
160
|
cbvmptv |
⊢ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 162 |
161
|
rneqi |
⊢ ran ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) = ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 163 |
162
|
infeq1i |
⊢ inf ( ran ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) , ℝ , < ) = inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) |
| 164 |
163
|
oveq2i |
⊢ ( 1 / inf ( ran ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) , ℝ , < ) ) = ( 1 / inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ) |
| 165 |
164
|
fveq2i |
⊢ ( ⌊ ‘ ( 1 / inf ( ran ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) , ℝ , < ) ) ) = ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ) ) |
| 166 |
165
|
oveq1i |
⊢ ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) , ℝ , < ) ) ) + 1 ) = ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ) ) + 1 ) |
| 167 |
166
|
fveq2i |
⊢ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) , ℝ , < ) ) ) + 1 ) ) = ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ) ) + 1 ) ) |
| 168 |
1 2 3 4 5 7 8 146 155 156 157 167
|
vonioolem1 |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 169 |
145 168
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 170 |
|
climuni |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 171 |
142 169 170
|
syl2anc |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |