Metamath Proof Explorer


Theorem vonioolem2

Description: The n-dimensional Lebesgue measure of open intervals. This is the first statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonioolem2.x ( 𝜑𝑋 ∈ Fin )
vonioolem2.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
vonioolem2.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
vonioolem2.n ( 𝜑𝑋 ≠ ∅ )
vonioolem2.t ( ( 𝜑𝑘𝑋 ) → ( 𝐴𝑘 ) < ( 𝐵𝑘 ) )
vonioolem2.i 𝐼 = X 𝑘𝑋 ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) )
vonioolem2.c 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) ) )
vonioolem2.d 𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) )
Assertion vonioolem2 ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) )

Proof

Step Hyp Ref Expression
1 vonioolem2.x ( 𝜑𝑋 ∈ Fin )
2 vonioolem2.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
3 vonioolem2.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
4 vonioolem2.n ( 𝜑𝑋 ≠ ∅ )
5 vonioolem2.t ( ( 𝜑𝑘𝑋 ) → ( 𝐴𝑘 ) < ( 𝐵𝑘 ) )
6 vonioolem2.i 𝐼 = X 𝑘𝑋 ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) )
7 vonioolem2.c 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) ) )
8 vonioolem2.d 𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) )
9 1 vonmea ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas )
10 1zzd ( 𝜑 → 1 ∈ ℤ )
11 nnuz ℕ = ( ℤ ‘ 1 )
12 1 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑋 ∈ Fin )
13 eqid dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 )
14 2 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝐴 : 𝑋 ⟶ ℝ )
15 14 ffvelrnda ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐴𝑘 ) ∈ ℝ )
16 nnrecre ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ )
17 16 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ )
18 15 17 readdcld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) ∈ ℝ )
19 18 fmpttd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ )
20 7 a1i ( 𝜑𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) ) ) )
21 1 mptexd ( 𝜑 → ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) ) ∈ V )
22 21 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) ) ∈ V )
23 20 22 fvmpt2d ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐶𝑛 ) = ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) ) )
24 23 feq1d ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐶𝑛 ) : 𝑋 ⟶ ℝ ↔ ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ ) )
25 19 24 mpbird ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐶𝑛 ) : 𝑋 ⟶ ℝ )
26 3 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝐵 : 𝑋 ⟶ ℝ )
27 12 13 25 26 hoimbl ( ( 𝜑𝑛 ∈ ℕ ) → X 𝑘𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) )
28 27 8 fmptd ( 𝜑𝐷 : ℕ ⟶ dom ( voln ‘ 𝑋 ) )
29 nfv 𝑘 ( 𝜑𝑛 ∈ ℕ )
30 oveq2 ( 𝑛 = 𝑚 → ( 1 / 𝑛 ) = ( 1 / 𝑚 ) )
31 30 oveq2d ( 𝑛 = 𝑚 → ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) = ( ( 𝐴𝑘 ) + ( 1 / 𝑚 ) ) )
32 31 mpteq2dv ( 𝑛 = 𝑚 → ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) ) = ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / 𝑚 ) ) ) )
33 32 cbvmptv ( 𝑛 ∈ ℕ ↦ ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / 𝑚 ) ) ) )
34 7 33 eqtri 𝐶 = ( 𝑚 ∈ ℕ ↦ ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / 𝑚 ) ) ) )
35 oveq2 ( 𝑚 = ( 𝑛 + 1 ) → ( 1 / 𝑚 ) = ( 1 / ( 𝑛 + 1 ) ) )
36 35 oveq2d ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝐴𝑘 ) + ( 1 / 𝑚 ) ) = ( ( 𝐴𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) )
37 36 mpteq2dv ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / 𝑚 ) ) ) = ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) )
38 simpr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ )
39 38 peano2nnd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ )
40 12 mptexd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) ∈ V )
41 34 37 39 40 fvmptd3 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐶 ‘ ( 𝑛 + 1 ) ) = ( 𝑘𝑋 ↦ ( ( 𝐴𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) )
42 ovexd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐴𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ∈ V )
43 41 42 fvmpt2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) = ( ( 𝐴𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) )
44 1red ( 𝑛 ∈ ℕ → 1 ∈ ℝ )
45 nnre ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ )
46 45 44 readdcld ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ )
47 peano2nn ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ )
48 nnne0 ( ( 𝑛 + 1 ) ∈ ℕ → ( 𝑛 + 1 ) ≠ 0 )
49 47 48 syl ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ≠ 0 )
50 44 46 49 redivcld ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ )
51 50 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ )
52 15 51 readdcld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐴𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ∈ ℝ )
53 43 52 eqeltrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ∈ ℝ )
54 53 rexrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ∈ ℝ* )
55 ressxr ℝ ⊆ ℝ*
56 3 ffvelrnda ( ( 𝜑𝑘𝑋 ) → ( 𝐵𝑘 ) ∈ ℝ )
57 55 56 sselid ( ( 𝜑𝑘𝑋 ) → ( 𝐵𝑘 ) ∈ ℝ* )
58 57 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐵𝑘 ) ∈ ℝ* )
59 45 ltp1d ( 𝑛 ∈ ℕ → 𝑛 < ( 𝑛 + 1 ) )
60 nnrp ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ )
61 47 nnrpd ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ+ )
62 60 61 ltrecd ( 𝑛 ∈ ℕ → ( 𝑛 < ( 𝑛 + 1 ) ↔ ( 1 / ( 𝑛 + 1 ) ) < ( 1 / 𝑛 ) ) )
63 59 62 mpbid ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) < ( 1 / 𝑛 ) )
64 50 16 63 ltled ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) ≤ ( 1 / 𝑛 ) )
65 64 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 1 / ( 𝑛 + 1 ) ) ≤ ( 1 / 𝑛 ) )
66 51 17 15 65 leadd2dd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐴𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ≤ ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) )
67 ovexd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) ∈ V )
68 23 67 fvmpt2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐶𝑛 ) ‘ 𝑘 ) = ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) )
69 43 68 breq12d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶𝑛 ) ‘ 𝑘 ) ↔ ( ( 𝐴𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ≤ ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) ) )
70 66 69 mpbird ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶𝑛 ) ‘ 𝑘 ) )
71 56 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐵𝑘 ) ∈ ℝ )
72 eqidd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐵𝑘 ) = ( 𝐵𝑘 ) )
73 71 72 eqled ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐵𝑘 ) ≤ ( 𝐵𝑘 ) )
74 icossico ( ( ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ∈ ℝ* ∧ ( 𝐵𝑘 ) ∈ ℝ* ) ∧ ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶𝑛 ) ‘ 𝑘 ) ∧ ( 𝐵𝑘 ) ≤ ( 𝐵𝑘 ) ) ) → ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) )
75 54 58 70 73 74 syl22anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) )
76 29 75 ixpssixp ( ( 𝜑𝑛 ∈ ℕ ) → X 𝑘𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ X 𝑘𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) )
77 8 a1i ( 𝜑𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ) )
78 27 elexd ( ( 𝜑𝑛 ∈ ℕ ) → X 𝑘𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ∈ V )
79 77 78 fvmpt2d ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐷𝑛 ) = X 𝑘𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) )
80 fveq2 ( 𝑛 = 𝑚 → ( 𝐶𝑛 ) = ( 𝐶𝑚 ) )
81 80 fveq1d ( 𝑛 = 𝑚 → ( ( 𝐶𝑛 ) ‘ 𝑘 ) = ( ( 𝐶𝑚 ) ‘ 𝑘 ) )
82 81 oveq1d ( 𝑛 = 𝑚 → ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) = ( ( ( 𝐶𝑚 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) )
83 82 ixpeq2dv ( 𝑛 = 𝑚X 𝑘𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) = X 𝑘𝑋 ( ( ( 𝐶𝑚 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) )
84 83 cbvmptv ( 𝑛 ∈ ℕ ↦ X 𝑘𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ) = ( 𝑚 ∈ ℕ ↦ X 𝑘𝑋 ( ( ( 𝐶𝑚 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) )
85 8 84 eqtri 𝐷 = ( 𝑚 ∈ ℕ ↦ X 𝑘𝑋 ( ( ( 𝐶𝑚 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) )
86 fveq2 ( 𝑚 = ( 𝑛 + 1 ) → ( 𝐶𝑚 ) = ( 𝐶 ‘ ( 𝑛 + 1 ) ) )
87 86 fveq1d ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝐶𝑚 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) )
88 87 oveq1d ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( 𝐶𝑚 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) = ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) )
89 88 ixpeq2dv ( 𝑚 = ( 𝑛 + 1 ) → X 𝑘𝑋 ( ( ( 𝐶𝑚 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) = X 𝑘𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) )
90 ovex ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ∈ V
91 90 rgenw 𝑘𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ∈ V
92 ixpexg ( ∀ 𝑘𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ∈ V → X 𝑘𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ∈ V )
93 91 92 ax-mp X 𝑘𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ∈ V
94 93 a1i ( ( 𝜑𝑛 ∈ ℕ ) → X 𝑘𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ∈ V )
95 85 89 39 94 fvmptd3 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐷 ‘ ( 𝑛 + 1 ) ) = X 𝑘𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) )
96 79 95 sseq12d ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐷𝑛 ) ⊆ ( 𝐷 ‘ ( 𝑛 + 1 ) ) ↔ X 𝑘𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ⊆ X 𝑘𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) ) )
97 76 96 mpbird ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐷𝑛 ) ⊆ ( 𝐷 ‘ ( 𝑛 + 1 ) ) )
98 1 13 2 3 hoimbl ( 𝜑X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) )
99 nfv 𝑘 𝜑
100 2 ffvelrnda ( ( 𝜑𝑘𝑋 ) → ( 𝐴𝑘 ) ∈ ℝ )
101 99 1 100 56 vonhoire ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ) ∈ ℝ )
102 6 a1i ( 𝜑𝐼 = X 𝑘𝑋 ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) ) )
103 nftru 𝑘
104 ioossico ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) ) ⊆ ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) )
105 104 a1i ( ( ⊤ ∧ 𝑘𝑋 ) → ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) ) ⊆ ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) )
106 103 105 ixpssixp ( ⊤ → X 𝑘𝑋 ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) ) ⊆ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) )
107 106 mptru X 𝑘𝑋 ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) ) ⊆ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) )
108 107 a1i ( 𝜑X 𝑘𝑋 ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) ) ⊆ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) )
109 102 108 eqsstrd ( 𝜑𝐼X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) )
110 55 a1i ( 𝜑 → ℝ ⊆ ℝ* )
111 2 110 fssd ( 𝜑𝐴 : 𝑋 ⟶ ℝ* )
112 3 110 fssd ( 𝜑𝐵 : 𝑋 ⟶ ℝ* )
113 1 13 111 112 ioovonmbl ( 𝜑X 𝑘𝑋 ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) )
114 6 113 eqeltrid ( 𝜑𝐼 ∈ dom ( voln ‘ 𝑋 ) )
115 9 98 101 109 114 meassre ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ∈ ℝ )
116 9 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( voln ‘ 𝑋 ) ∈ Meas )
117 79 27 eqeltrd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐷𝑛 ) ∈ dom ( voln ‘ 𝑋 ) )
118 114 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝐼 ∈ dom ( voln ‘ 𝑋 ) )
119 55 100 sselid ( ( 𝜑𝑘𝑋 ) → ( 𝐴𝑘 ) ∈ ℝ* )
120 119 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐴𝑘 ) ∈ ℝ* )
121 60 rpreccld ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ )
122 121 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ+ )
123 15 122 ltaddrpd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐴𝑘 ) < ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) )
124 icossioo ( ( ( ( 𝐴𝑘 ) ∈ ℝ* ∧ ( 𝐵𝑘 ) ∈ ℝ* ) ∧ ( ( 𝐴𝑘 ) < ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) ∧ ( 𝐵𝑘 ) ≤ ( 𝐵𝑘 ) ) ) → ( ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵𝑘 ) ) ⊆ ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) ) )
125 120 58 123 73 124 syl22anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵𝑘 ) ) ⊆ ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) ) )
126 29 125 ixpssixp ( ( 𝜑𝑛 ∈ ℕ ) → X 𝑘𝑋 ( ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵𝑘 ) ) ⊆ X 𝑘𝑋 ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) ) )
127 68 oveq1d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) = ( ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵𝑘 ) ) )
128 127 ixpeq2dva ( ( 𝜑𝑛 ∈ ℕ ) → X 𝑘𝑋 ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) [,) ( 𝐵𝑘 ) ) = X 𝑘𝑋 ( ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵𝑘 ) ) )
129 79 128 eqtrd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐷𝑛 ) = X 𝑘𝑋 ( ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵𝑘 ) ) )
130 6 a1i ( ( 𝜑𝑛 ∈ ℕ ) → 𝐼 = X 𝑘𝑋 ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) ) )
131 129 130 sseq12d ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐷𝑛 ) ⊆ 𝐼X 𝑘𝑋 ( ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵𝑘 ) ) ⊆ X 𝑘𝑋 ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) ) ) )
132 126 131 mpbird ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐷𝑛 ) ⊆ 𝐼 )
133 116 13 117 118 132 meassle ( ( 𝜑𝑛 ∈ ℕ ) → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ≤ ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) )
134 eqid ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) )
135 9 10 11 28 97 115 133 134 meaiuninc2 ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ 𝑛 ∈ ℕ ( 𝐷𝑛 ) ) )
136 99 1 100 57 iunhoiioo ( 𝜑 𝑛 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵𝑘 ) ) = X 𝑘𝑋 ( ( 𝐴𝑘 ) (,) ( 𝐵𝑘 ) ) )
137 129 iuneq2dv ( 𝜑 𝑛 ∈ ℕ ( 𝐷𝑛 ) = 𝑛 ∈ ℕ X 𝑘𝑋 ( ( ( 𝐴𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵𝑘 ) ) )
138 136 137 102 3eqtr4d ( 𝜑 𝑛 ∈ ℕ ( 𝐷𝑛 ) = 𝐼 )
139 138 eqcomd ( 𝜑𝐼 = 𝑛 ∈ ℕ ( 𝐷𝑛 ) )
140 139 fveq2d ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln ‘ 𝑋 ) ‘ 𝑛 ∈ ℕ ( 𝐷𝑛 ) ) )
141 140 eqcomd ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝑛 ∈ ℕ ( 𝐷𝑛 ) ) = ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) )
142 135 141 breqtrd ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) )
143 2fveq3 ( 𝑛 = 𝑚 → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) = ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑚 ) ) )
144 143 cbvmptv ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑚 ) ) )
145 144 a1i ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑚 ) ) ) )
146 144 eqcomi ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑚 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) )
147 eqcom ( 𝑛 = 𝑚𝑚 = 𝑛 )
148 147 imbi1i ( ( 𝑛 = 𝑚 → ( ( 𝐶𝑛 ) ‘ 𝑘 ) = ( ( 𝐶𝑚 ) ‘ 𝑘 ) ) ↔ ( 𝑚 = 𝑛 → ( ( 𝐶𝑛 ) ‘ 𝑘 ) = ( ( 𝐶𝑚 ) ‘ 𝑘 ) ) )
149 eqcom ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) = ( ( 𝐶𝑚 ) ‘ 𝑘 ) ↔ ( ( 𝐶𝑚 ) ‘ 𝑘 ) = ( ( 𝐶𝑛 ) ‘ 𝑘 ) )
150 149 imbi2i ( ( 𝑚 = 𝑛 → ( ( 𝐶𝑛 ) ‘ 𝑘 ) = ( ( 𝐶𝑚 ) ‘ 𝑘 ) ) ↔ ( 𝑚 = 𝑛 → ( ( 𝐶𝑚 ) ‘ 𝑘 ) = ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) )
151 148 150 bitri ( ( 𝑛 = 𝑚 → ( ( 𝐶𝑛 ) ‘ 𝑘 ) = ( ( 𝐶𝑚 ) ‘ 𝑘 ) ) ↔ ( 𝑚 = 𝑛 → ( ( 𝐶𝑚 ) ‘ 𝑘 ) = ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) )
152 81 151 mpbi ( 𝑚 = 𝑛 → ( ( 𝐶𝑚 ) ‘ 𝑘 ) = ( ( 𝐶𝑛 ) ‘ 𝑘 ) )
153 152 oveq2d ( 𝑚 = 𝑛 → ( ( 𝐵𝑘 ) − ( ( 𝐶𝑚 ) ‘ 𝑘 ) ) = ( ( 𝐵𝑘 ) − ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) )
154 153 prodeq2ad ( 𝑚 = 𝑛 → ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( ( 𝐶𝑚 ) ‘ 𝑘 ) ) = ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) )
155 154 cbvmptv ( 𝑚 ∈ ℕ ↦ ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( ( 𝐶𝑚 ) ‘ 𝑘 ) ) ) = ( 𝑛 ∈ ℕ ↦ ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) )
156 eqid inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) ) , ℝ , < ) = inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) ) , ℝ , < )
157 eqid ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) ) , ℝ , < ) ) ) + 1 ) = ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) ) , ℝ , < ) ) ) + 1 )
158 fveq2 ( 𝑗 = 𝑘 → ( 𝐵𝑗 ) = ( 𝐵𝑘 ) )
159 fveq2 ( 𝑗 = 𝑘 → ( 𝐴𝑗 ) = ( 𝐴𝑘 ) )
160 158 159 oveq12d ( 𝑗 = 𝑘 → ( ( 𝐵𝑗 ) − ( 𝐴𝑗 ) ) = ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) )
161 160 cbvmptv ( 𝑗𝑋 ↦ ( ( 𝐵𝑗 ) − ( 𝐴𝑗 ) ) ) = ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) )
162 161 rneqi ran ( 𝑗𝑋 ↦ ( ( 𝐵𝑗 ) − ( 𝐴𝑗 ) ) ) = ran ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) )
163 162 infeq1i inf ( ran ( 𝑗𝑋 ↦ ( ( 𝐵𝑗 ) − ( 𝐴𝑗 ) ) ) , ℝ , < ) = inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) ) , ℝ , < )
164 163 oveq2i ( 1 / inf ( ran ( 𝑗𝑋 ↦ ( ( 𝐵𝑗 ) − ( 𝐴𝑗 ) ) ) , ℝ , < ) ) = ( 1 / inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) ) , ℝ , < ) )
165 164 fveq2i ( ⌊ ‘ ( 1 / inf ( ran ( 𝑗𝑋 ↦ ( ( 𝐵𝑗 ) − ( 𝐴𝑗 ) ) ) , ℝ , < ) ) ) = ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) ) , ℝ , < ) ) )
166 165 oveq1i ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑗𝑋 ↦ ( ( 𝐵𝑗 ) − ( 𝐴𝑗 ) ) ) , ℝ , < ) ) ) + 1 ) = ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) ) , ℝ , < ) ) ) + 1 )
167 166 fveq2i ( ℤ ‘ ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑗𝑋 ↦ ( ( 𝐵𝑗 ) − ( 𝐴𝑗 ) ) ) , ℝ , < ) ) ) + 1 ) ) = ( ℤ ‘ ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) ) , ℝ , < ) ) ) + 1 ) )
168 1 2 3 4 5 7 8 146 155 156 157 167 vonioolem1 ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑚 ) ) ) ⇝ ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) )
169 145 168 eqbrtrd ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) ⇝ ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) )
170 climuni ( ( ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) ⇝ ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) )
171 142 169 170 syl2anc ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) )