| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonioolem2.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | vonioolem2.a | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 3 |  | vonioolem2.b | ⊢ ( 𝜑  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 4 |  | vonioolem2.n | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 5 |  | vonioolem2.t | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  <  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 6 |  | vonioolem2.i | ⊢ 𝐼  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 7 |  | vonioolem2.c | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 8 |  | vonioolem2.d | ⊢ 𝐷  =  ( 𝑛  ∈  ℕ  ↦  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 9 | 1 | vonmea | ⊢ ( 𝜑  →  ( voln ‘ 𝑋 )  ∈  Meas ) | 
						
							| 10 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 11 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 12 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑋  ∈  Fin ) | 
						
							| 13 |  | eqid | ⊢ dom  ( voln ‘ 𝑋 )  =  dom  ( voln ‘ 𝑋 ) | 
						
							| 14 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 15 | 14 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 16 |  | nnrecre | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 18 | 15 17 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 19 | 18 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) : 𝑋 ⟶ ℝ ) | 
						
							| 20 | 7 | a1i | ⊢ ( 𝜑  →  𝐶  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 21 | 1 | mptexd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) )  ∈  V ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) )  ∈  V ) | 
						
							| 23 | 20 22 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐶 ‘ 𝑛 )  =  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 24 | 23 | feq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ  ↔  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) : 𝑋 ⟶ ℝ ) ) | 
						
							| 25 | 19 24 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ) | 
						
							| 26 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 27 | 12 13 25 26 | hoimbl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∈  dom  ( voln ‘ 𝑋 ) ) | 
						
							| 28 | 27 8 | fmptd | ⊢ ( 𝜑  →  𝐷 : ℕ ⟶ dom  ( voln ‘ 𝑋 ) ) | 
						
							| 29 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑛  ∈  ℕ ) | 
						
							| 30 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 1  /  𝑛 )  =  ( 1  /  𝑚 ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) )  =  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) ) | 
						
							| 32 | 31 | mpteq2dv | ⊢ ( 𝑛  =  𝑚  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) )  =  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) ) ) | 
						
							| 33 | 32 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) ) ) | 
						
							| 34 | 7 33 | eqtri | ⊢ 𝐶  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) ) ) | 
						
							| 35 |  | oveq2 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 1  /  𝑚 )  =  ( 1  /  ( 𝑛  +  1 ) ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑚 ) )  =  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) ) ) | 
						
							| 37 | 36 | mpteq2dv | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) )  =  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 38 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 39 | 38 | peano2nnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 40 | 12 | mptexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) ) )  ∈  V ) | 
						
							| 41 | 34 37 39 40 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐶 ‘ ( 𝑛  +  1 ) )  =  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 42 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) )  ∈  V ) | 
						
							| 43 | 41 42 | fvmpt2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 )  =  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) ) ) | 
						
							| 44 |  | 1red | ⊢ ( 𝑛  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 45 |  | nnre | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ ) | 
						
							| 46 | 45 44 | readdcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℝ ) | 
						
							| 47 |  | peano2nn | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 48 |  | nnne0 | ⊢ ( ( 𝑛  +  1 )  ∈  ℕ  →  ( 𝑛  +  1 )  ≠  0 ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ≠  0 ) | 
						
							| 50 | 44 46 49 | redivcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 51 | 50 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 52 | 15 51 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) )  ∈  ℝ ) | 
						
							| 53 | 43 52 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 54 | 53 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 55 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 56 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 57 | 55 56 | sselid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 58 | 57 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 59 | 45 | ltp1d | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  <  ( 𝑛  +  1 ) ) | 
						
							| 60 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 61 | 47 | nnrpd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℝ+ ) | 
						
							| 62 | 60 61 | ltrecd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  <  ( 𝑛  +  1 )  ↔  ( 1  /  ( 𝑛  +  1 ) )  <  ( 1  /  𝑛 ) ) ) | 
						
							| 63 | 59 62 | mpbid | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  ( 𝑛  +  1 ) )  <  ( 1  /  𝑛 ) ) | 
						
							| 64 | 50 16 63 | ltled | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  ( 𝑛  +  1 ) )  ≤  ( 1  /  𝑛 ) ) | 
						
							| 65 | 64 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  ( 𝑛  +  1 ) )  ≤  ( 1  /  𝑛 ) ) | 
						
							| 66 | 51 17 15 65 | leadd2dd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) )  ≤  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 67 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) )  ∈  V ) | 
						
							| 68 | 23 67 | fvmpt2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  =  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 69 | 43 68 | breq12d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 )  ≤  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  ↔  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) )  ≤  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 70 | 66 69 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 )  ≤  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) | 
						
							| 71 | 56 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 72 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 73 | 71 72 | eqled | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 74 |  | icossico | ⊢ ( ( ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 )  ∈  ℝ*  ∧  ( 𝐵 ‘ 𝑘 )  ∈  ℝ* )  ∧  ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 )  ≤  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  ∧  ( 𝐵 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) )  →  ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 75 | 54 58 70 73 74 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 76 | 29 75 | ixpssixp | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 77 | 8 | a1i | ⊢ ( 𝜑  →  𝐷  =  ( 𝑛  ∈  ℕ  ↦  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 78 | 27 | elexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∈  V ) | 
						
							| 79 | 77 78 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  =  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 80 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐶 ‘ 𝑛 )  =  ( 𝐶 ‘ 𝑚 ) ) | 
						
							| 81 | 80 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) | 
						
							| 82 | 81 | oveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  =  ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 83 | 82 | ixpeq2dv | ⊢ ( 𝑛  =  𝑚  →  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 84 | 83 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 85 | 8 84 | eqtri | ⊢ 𝐷  =  ( 𝑚  ∈  ℕ  ↦  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 86 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 𝐶 ‘ 𝑚 )  =  ( 𝐶 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 87 | 86 | fveq1d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) ) | 
						
							| 88 | 87 | oveq1d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  =  ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 89 | 88 | ixpeq2dv | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 90 |  | ovex | ⊢ ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∈  V | 
						
							| 91 | 90 | rgenw | ⊢ ∀ 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∈  V | 
						
							| 92 |  | ixpexg | ⊢ ( ∀ 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∈  V  →  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∈  V ) | 
						
							| 93 | 91 92 | ax-mp | ⊢ X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∈  V | 
						
							| 94 | 93 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∈  V ) | 
						
							| 95 | 85 89 39 94 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ ( 𝑛  +  1 ) )  =  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 96 | 79 95 | sseq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐷 ‘ 𝑛 )  ⊆  ( 𝐷 ‘ ( 𝑛  +  1 ) )  ↔  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 97 | 76 96 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  ⊆  ( 𝐷 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 98 | 1 13 2 3 | hoimbl | ⊢ ( 𝜑  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  ∈  dom  ( voln ‘ 𝑋 ) ) | 
						
							| 99 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 100 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 101 | 99 1 100 56 | vonhoire | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 102 | 6 | a1i | ⊢ ( 𝜑  →  𝐼  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 103 |  | nftru | ⊢ Ⅎ 𝑘 ⊤ | 
						
							| 104 |  | ioossico | ⊢ ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 105 | 104 | a1i | ⊢ ( ( ⊤  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 106 | 103 105 | ixpssixp | ⊢ ( ⊤  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) )  ⊆  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 107 | 106 | mptru | ⊢ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) )  ⊆  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 108 | 107 | a1i | ⊢ ( 𝜑  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) )  ⊆  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 109 | 102 108 | eqsstrd | ⊢ ( 𝜑  →  𝐼  ⊆  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 110 | 55 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℝ* ) | 
						
							| 111 | 2 110 | fssd | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ* ) | 
						
							| 112 | 3 110 | fssd | ⊢ ( 𝜑  →  𝐵 : 𝑋 ⟶ ℝ* ) | 
						
							| 113 | 1 13 111 112 | ioovonmbl | ⊢ ( 𝜑  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) )  ∈  dom  ( voln ‘ 𝑋 ) ) | 
						
							| 114 | 6 113 | eqeltrid | ⊢ ( 𝜑  →  𝐼  ∈  dom  ( voln ‘ 𝑋 ) ) | 
						
							| 115 | 9 98 101 109 114 | meassre | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  ∈  ℝ ) | 
						
							| 116 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( voln ‘ 𝑋 )  ∈  Meas ) | 
						
							| 117 | 79 27 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  ∈  dom  ( voln ‘ 𝑋 ) ) | 
						
							| 118 | 114 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐼  ∈  dom  ( voln ‘ 𝑋 ) ) | 
						
							| 119 | 55 100 | sselid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 120 | 119 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 121 | 60 | rpreccld | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 122 | 121 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 123 | 15 122 | ltaddrpd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  <  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 124 |  | icossioo | ⊢ ( ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ*  ∧  ( 𝐵 ‘ 𝑘 )  ∈  ℝ* )  ∧  ( ( 𝐴 ‘ 𝑘 )  <  ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) )  ∧  ( 𝐵 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 125 | 120 58 123 73 124 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 126 | 29 125 | ixpssixp | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 127 | 68 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 128 | 127 | ixpeq2dva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑋 ( ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 129 | 79 128 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  =  X 𝑘  ∈  𝑋 ( ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 130 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐼  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 131 | 129 130 | sseq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐷 ‘ 𝑛 )  ⊆  𝐼  ↔  X 𝑘  ∈  𝑋 ( ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) )  ⊆  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 132 | 126 131 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  ⊆  𝐼 ) | 
						
							| 133 | 116 13 117 118 132 | meassle | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) )  ≤  ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ) | 
						
							| 134 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) | 
						
							| 135 | 9 10 11 28 97 115 133 134 | meaiuninc2 | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  ⇝  ( ( voln ‘ 𝑋 ) ‘ ∪  𝑛  ∈  ℕ ( 𝐷 ‘ 𝑛 ) ) ) | 
						
							| 136 | 99 1 100 57 | iunhoiioo | ⊢ ( 𝜑  →  ∪  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 137 | 129 | iuneq2dv | ⊢ ( 𝜑  →  ∪  𝑛  ∈  ℕ ( 𝐷 ‘ 𝑛 )  =  ∪  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( ( 𝐴 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 138 | 136 137 102 | 3eqtr4d | ⊢ ( 𝜑  →  ∪  𝑛  ∈  ℕ ( 𝐷 ‘ 𝑛 )  =  𝐼 ) | 
						
							| 139 | 138 | eqcomd | ⊢ ( 𝜑  →  𝐼  =  ∪  𝑛  ∈  ℕ ( 𝐷 ‘ 𝑛 ) ) | 
						
							| 140 | 139 | fveq2d | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( ( voln ‘ 𝑋 ) ‘ ∪  𝑛  ∈  ℕ ( 𝐷 ‘ 𝑛 ) ) ) | 
						
							| 141 | 140 | eqcomd | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ ∪  𝑛  ∈  ℕ ( 𝐷 ‘ 𝑛 ) )  =  ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ) | 
						
							| 142 | 135 141 | breqtrd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  ⇝  ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ) | 
						
							| 143 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑚  →  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) )  =  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) | 
						
							| 144 | 143 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) | 
						
							| 145 | 144 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) ) | 
						
							| 146 | 144 | eqcomi | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) | 
						
							| 147 |  | eqcom | ⊢ ( 𝑛  =  𝑚  ↔  𝑚  =  𝑛 ) | 
						
							| 148 | 147 | imbi1i | ⊢ ( ( 𝑛  =  𝑚  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) )  ↔  ( 𝑚  =  𝑛  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ) | 
						
							| 149 |  | eqcom | ⊢ ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 )  ↔  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) | 
						
							| 150 | 149 | imbi2i | ⊢ ( ( 𝑚  =  𝑛  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) )  ↔  ( 𝑚  =  𝑛  →  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 151 | 148 150 | bitri | ⊢ ( ( 𝑛  =  𝑚  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) )  ↔  ( 𝑚  =  𝑛  →  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 152 | 81 151 | mpbi | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) | 
						
							| 153 | 152 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐵 ‘ 𝑘 )  −  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 154 | 153 | prodeq2ad | ⊢ ( 𝑚  =  𝑛  →  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) )  =  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 155 | 154 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 156 |  | eqid | ⊢ inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) ,  ℝ ,   <  )  =  inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) ,  ℝ ,   <  ) | 
						
							| 157 |  | eqid | ⊢ ( ( ⌊ ‘ ( 1  /  inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) ,  ℝ ,   <  ) ) )  +  1 )  =  ( ( ⌊ ‘ ( 1  /  inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) ,  ℝ ,   <  ) ) )  +  1 ) | 
						
							| 158 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐵 ‘ 𝑗 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 159 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐴 ‘ 𝑗 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 160 | 158 159 | oveq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) )  =  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 161 | 160 | cbvmptv | ⊢ ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) )  =  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 162 | 161 | rneqi | ⊢ ran  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) )  =  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 163 | 162 | infeq1i | ⊢ inf ( ran  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ) ,  ℝ ,   <  )  =  inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) ,  ℝ ,   <  ) | 
						
							| 164 | 163 | oveq2i | ⊢ ( 1  /  inf ( ran  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ) ,  ℝ ,   <  ) )  =  ( 1  /  inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) ,  ℝ ,   <  ) ) | 
						
							| 165 | 164 | fveq2i | ⊢ ( ⌊ ‘ ( 1  /  inf ( ran  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ) ,  ℝ ,   <  ) ) )  =  ( ⌊ ‘ ( 1  /  inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) ,  ℝ ,   <  ) ) ) | 
						
							| 166 | 165 | oveq1i | ⊢ ( ( ⌊ ‘ ( 1  /  inf ( ran  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ) ,  ℝ ,   <  ) ) )  +  1 )  =  ( ( ⌊ ‘ ( 1  /  inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) ,  ℝ ,   <  ) ) )  +  1 ) | 
						
							| 167 | 166 | fveq2i | ⊢ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  inf ( ran  ( 𝑗  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑗 )  −  ( 𝐴 ‘ 𝑗 ) ) ) ,  ℝ ,   <  ) ) )  +  1 ) )  =  ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1  /  inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) ,  ℝ ,   <  ) ) )  +  1 ) ) | 
						
							| 168 | 1 2 3 4 5 7 8 146 155 156 157 167 | vonioolem1 | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) )  ⇝  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 169 | 145 168 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  ⇝  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 170 |  | climuni | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  ⇝  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  ⇝  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 171 | 142 169 170 | syl2anc | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) |