Step |
Hyp |
Ref |
Expression |
1 |
|
vonioolem2.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
vonioolem2.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
3 |
|
vonioolem2.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
4 |
|
vonioolem2.n |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
5 |
|
vonioolem2.t |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
6 |
|
vonioolem2.i |
⊢ 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) |
7 |
|
vonioolem2.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
8 |
|
vonioolem2.d |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
9 |
1
|
vonmea |
⊢ ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas ) |
10 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
11 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ Fin ) |
13 |
|
eqid |
⊢ dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 : 𝑋 ⟶ ℝ ) |
15 |
14
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
16 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
17 |
16
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
18 |
15 17
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ∈ ℝ ) |
19 |
18
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ ) |
20 |
7
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) ) |
21 |
1
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ∈ V ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ∈ V ) |
23 |
20 22
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
24 |
23
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ↔ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ ) ) |
25 |
19 24
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ) |
26 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐵 : 𝑋 ⟶ ℝ ) |
27 |
12 13 25 26
|
hoimbl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) ) |
28 |
27 8
|
fmptd |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ dom ( voln ‘ 𝑋 ) ) |
29 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑛 ∈ ℕ ) |
30 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 / 𝑛 ) = ( 1 / 𝑚 ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) = ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) |
32 |
31
|
mpteq2dv |
⊢ ( 𝑛 = 𝑚 → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) ) |
33 |
32
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) ) |
34 |
7 33
|
eqtri |
⊢ 𝐶 = ( 𝑚 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) ) |
35 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 1 / 𝑚 ) = ( 1 / ( 𝑛 + 1 ) ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) = ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) |
37 |
36
|
mpteq2dv |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) ) |
38 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
39 |
38
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
40 |
12
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) ∈ V ) |
41 |
34 37 39 40
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ ( 𝑛 + 1 ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) ) |
42 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ∈ V ) |
43 |
41 42
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) |
44 |
|
1red |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) |
45 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
46 |
45 44
|
readdcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ ) |
47 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
48 |
|
nnne0 |
⊢ ( ( 𝑛 + 1 ) ∈ ℕ → ( 𝑛 + 1 ) ≠ 0 ) |
49 |
47 48
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ≠ 0 ) |
50 |
44 46 49
|
redivcld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ ) |
51 |
50
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ ) |
52 |
15 51
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
53 |
43 52
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ∈ ℝ ) |
54 |
53
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ∈ ℝ* ) |
55 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
56 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
57 |
55 56
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
58 |
57
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
59 |
45
|
ltp1d |
⊢ ( 𝑛 ∈ ℕ → 𝑛 < ( 𝑛 + 1 ) ) |
60 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
61 |
47
|
nnrpd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ+ ) |
62 |
60 61
|
ltrecd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 < ( 𝑛 + 1 ) ↔ ( 1 / ( 𝑛 + 1 ) ) < ( 1 / 𝑛 ) ) ) |
63 |
59 62
|
mpbid |
⊢ ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) < ( 1 / 𝑛 ) ) |
64 |
50 16 63
|
ltled |
⊢ ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) ≤ ( 1 / 𝑛 ) ) |
65 |
64
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / ( 𝑛 + 1 ) ) ≤ ( 1 / 𝑛 ) ) |
66 |
51 17 15 65
|
leadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ≤ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
67 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ∈ V ) |
68 |
23 67
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
69 |
43 68
|
breq12d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ↔ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ≤ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
70 |
66 69
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) |
71 |
56
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
72 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑘 ) ) |
73 |
71 72
|
eqled |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) |
74 |
|
icossico |
⊢ ( ( ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ∈ ℝ* ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) ∧ ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) ) → ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
75 |
54 58 70 73 74
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
76 |
29 75
|
ixpssixp |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
77 |
8
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
78 |
27
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V ) |
79 |
77 78
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
80 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑚 ) ) |
81 |
80
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) |
82 |
81
|
oveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
83 |
82
|
ixpeq2dv |
⊢ ( 𝑛 = 𝑚 → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
84 |
83
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( 𝑚 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
85 |
8 84
|
eqtri |
⊢ 𝐷 = ( 𝑚 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
86 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ ( 𝑛 + 1 ) ) ) |
87 |
86
|
fveq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) |
88 |
87
|
oveq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
89 |
88
|
ixpeq2dv |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
90 |
|
ovex |
⊢ ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V |
91 |
90
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V |
92 |
|
ixpexg |
⊢ ( ∀ 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V ) |
93 |
91 92
|
ax-mp |
⊢ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V |
94 |
93
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V ) |
95 |
85 89 39 94
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ ( 𝑛 + 1 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
96 |
79 95
|
sseq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) ⊆ ( 𝐷 ‘ ( 𝑛 + 1 ) ) ↔ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
97 |
76 96
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ⊆ ( 𝐷 ‘ ( 𝑛 + 1 ) ) ) |
98 |
1 13 2 3
|
hoimbl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) ) |
99 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
100 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
101 |
99 1 100 56
|
vonhoire |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
102 |
6
|
a1i |
⊢ ( 𝜑 → 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
103 |
|
nftru |
⊢ Ⅎ 𝑘 ⊤ |
104 |
|
ioossico |
⊢ ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) |
105 |
104
|
a1i |
⊢ ( ( ⊤ ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
106 |
103 105
|
ixpssixp |
⊢ ( ⊤ → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
107 |
106
|
mptru |
⊢ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) |
108 |
107
|
a1i |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
109 |
102 108
|
eqsstrd |
⊢ ( 𝜑 → 𝐼 ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
110 |
55
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ* ) |
111 |
2 110
|
fssd |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ* ) |
112 |
3 110
|
fssd |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ* ) |
113 |
1 13 111 112
|
ioovonmbl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) ) |
114 |
6 113
|
eqeltrid |
⊢ ( 𝜑 → 𝐼 ∈ dom ( voln ‘ 𝑋 ) ) |
115 |
9 98 101 109 114
|
meassre |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ∈ ℝ ) |
116 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( voln ‘ 𝑋 ) ∈ Meas ) |
117 |
79 27
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ∈ dom ( voln ‘ 𝑋 ) ) |
118 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐼 ∈ dom ( voln ‘ 𝑋 ) ) |
119 |
55 100
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ* ) |
120 |
119
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ* ) |
121 |
60
|
rpreccld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
122 |
121
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
123 |
15 122
|
ltaddrpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) < ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
124 |
|
icossioo |
⊢ ( ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ* ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) ∧ ( ( 𝐴 ‘ 𝑘 ) < ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) ) → ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
125 |
120 58 123 73 124
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
126 |
29 125
|
ixpssixp |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
127 |
68
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
128 |
127
|
ixpeq2dva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
129 |
79 128
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
130 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
131 |
129 130
|
sseq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ 𝑛 ) ⊆ 𝐼 ↔ X 𝑘 ∈ 𝑋 ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
132 |
126 131
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) ⊆ 𝐼 ) |
133 |
116 13 117 118 132
|
meassle |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ≤ ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ) |
134 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) |
135 |
9 10 11 28 97 115 133 134
|
meaiuninc2 |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) ) ) |
136 |
99 1 100 57
|
iunhoiioo |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
137 |
129
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
138 |
136 137 102
|
3eqtr4d |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) = 𝐼 ) |
139 |
138
|
eqcomd |
⊢ ( 𝜑 → 𝐼 = ∪ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) ) |
140 |
139
|
fveq2d |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln ‘ 𝑋 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) ) ) |
141 |
140
|
eqcomd |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) ) = ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ) |
142 |
135 141
|
breqtrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ) |
143 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑚 → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) = ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) |
144 |
143
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) |
145 |
144
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) ) |
146 |
144
|
eqcomi |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) |
147 |
|
eqcom |
⊢ ( 𝑛 = 𝑚 ↔ 𝑚 = 𝑛 ) |
148 |
147
|
imbi1i |
⊢ ( ( 𝑛 = 𝑚 → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ↔ ( 𝑚 = 𝑛 → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ) |
149 |
|
eqcom |
⊢ ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ↔ ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) |
150 |
149
|
imbi2i |
⊢ ( ( 𝑚 = 𝑛 → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ↔ ( 𝑚 = 𝑛 → ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
151 |
148 150
|
bitri |
⊢ ( ( 𝑛 = 𝑚 → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ↔ ( 𝑚 = 𝑛 → ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
152 |
81 151
|
mpbi |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) |
153 |
152
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
154 |
153
|
prodeq2ad |
⊢ ( 𝑚 = 𝑛 → ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
155 |
154
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ) = ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
156 |
|
eqid |
⊢ inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) = inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) |
157 |
|
eqid |
⊢ ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ) ) + 1 ) = ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ) ) + 1 ) |
158 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐵 ‘ 𝑗 ) = ( 𝐵 ‘ 𝑘 ) ) |
159 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 ‘ 𝑗 ) = ( 𝐴 ‘ 𝑘 ) ) |
160 |
158 159
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
161 |
160
|
cbvmptv |
⊢ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
162 |
161
|
rneqi |
⊢ ran ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) = ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
163 |
162
|
infeq1i |
⊢ inf ( ran ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) , ℝ , < ) = inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) |
164 |
163
|
oveq2i |
⊢ ( 1 / inf ( ran ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) , ℝ , < ) ) = ( 1 / inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ) |
165 |
164
|
fveq2i |
⊢ ( ⌊ ‘ ( 1 / inf ( ran ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) , ℝ , < ) ) ) = ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ) ) |
166 |
165
|
oveq1i |
⊢ ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) , ℝ , < ) ) ) + 1 ) = ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ) ) + 1 ) |
167 |
166
|
fveq2i |
⊢ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) , ℝ , < ) ) ) + 1 ) ) = ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ) ) + 1 ) ) |
168 |
1 2 3 4 5 7 8 146 155 156 157 167
|
vonioolem1 |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
169 |
145 168
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
170 |
|
climuni |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
171 |
142 169 170
|
syl2anc |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |