Metamath Proof Explorer


Theorem iunhoiioo

Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iunhoiioo.k 𝑘 𝜑
iunhoiioo.x ( 𝜑𝑋 ∈ Fin )
iunhoiioo.a ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ )
iunhoiioo.b ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ* )
Assertion iunhoiioo ( 𝜑 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 iunhoiioo.k 𝑘 𝜑
2 iunhoiioo.x ( 𝜑𝑋 ∈ Fin )
3 iunhoiioo.a ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ )
4 iunhoiioo.b ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ* )
5 nnn0 ℕ ≠ ∅
6 iunconst ( ℕ ≠ ∅ → 𝑛 ∈ ℕ { ∅ } = { ∅ } )
7 5 6 ax-mp 𝑛 ∈ ℕ { ∅ } = { ∅ }
8 7 a1i ( 𝑋 = ∅ → 𝑛 ∈ ℕ { ∅ } = { ∅ } )
9 ixpeq1 ( 𝑋 = ∅ → X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘 ∈ ∅ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) )
10 ixp0x X 𝑘 ∈ ∅ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = { ∅ }
11 10 a1i ( 𝑋 = ∅ → X 𝑘 ∈ ∅ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = { ∅ } )
12 9 11 eqtrd ( 𝑋 = ∅ → X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = { ∅ } )
13 12 adantr ( ( 𝑋 = ∅ ∧ 𝑛 ∈ ℕ ) → X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = { ∅ } )
14 13 iuneq2dv ( 𝑋 = ∅ → 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = 𝑛 ∈ ℕ { ∅ } )
15 ixpeq1 ( 𝑋 = ∅ → X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) = X 𝑘 ∈ ∅ ( 𝐴 (,) 𝐵 ) )
16 ixp0x X 𝑘 ∈ ∅ ( 𝐴 (,) 𝐵 ) = { ∅ }
17 16 a1i ( 𝑋 = ∅ → X 𝑘 ∈ ∅ ( 𝐴 (,) 𝐵 ) = { ∅ } )
18 15 17 eqtrd ( 𝑋 = ∅ → X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) = { ∅ } )
19 8 14 18 3eqtr4d ( 𝑋 = ∅ → 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
20 19 adantl ( ( 𝜑𝑋 = ∅ ) → 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
21 nfv 𝑘 𝑛 ∈ ℕ
22 1 21 nfan 𝑘 ( 𝜑𝑛 ∈ ℕ )
23 3 rexrd ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ* )
24 23 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝐴 ∈ ℝ* )
25 4 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝐵 ∈ ℝ* )
26 3 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝐴 ∈ ℝ )
27 nnrp ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ )
28 27 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝑛 ∈ ℝ+ )
29 28 rpreccld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ+ )
30 26 29 ltaddrpd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝐴 < ( 𝐴 + ( 1 / 𝑛 ) ) )
31 4 xrleidd ( ( 𝜑𝑘𝑋 ) → 𝐵𝐵 )
32 31 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝐵𝐵 )
33 icossioo ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) ∧ ( 𝐴 < ( 𝐴 + ( 1 / 𝑛 ) ) ∧ 𝐵𝐵 ) ) → ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) )
34 24 25 30 32 33 syl22anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) )
35 22 34 ixpssixp ( ( 𝜑𝑛 ∈ ℕ ) → X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
36 35 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
37 iunss ( 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ↔ ∀ 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
38 36 37 sylibr ( 𝜑 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
39 38 adantr ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
40 nfv 𝑘 ¬ 𝑋 = ∅
41 1 40 nfan 𝑘 ( 𝜑 ∧ ¬ 𝑋 = ∅ )
42 nfcv 𝑘 𝑓
43 nfixp1 𝑘 X 𝑘𝑋 ( 𝐴 (,) 𝐵 )
44 42 43 nfel 𝑘 𝑓X 𝑘𝑋 ( 𝐴 (,) 𝐵 )
45 41 44 nfan 𝑘 ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
46 2 ad2antrr ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ) → 𝑋 ∈ Fin )
47 neqne ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ )
48 47 ad2antlr ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ) → 𝑋 ≠ ∅ )
49 3 ad4ant14 ( ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ) ∧ 𝑘𝑋 ) → 𝐴 ∈ ℝ )
50 4 ad4ant14 ( ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ) ∧ 𝑘𝑋 ) → 𝐵 ∈ ℝ* )
51 simpr ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ) → 𝑓X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
52 eqid inf ( ran ( 𝑘𝑋 ↦ ( ( 𝑓𝑘 ) − 𝐴 ) ) , ℝ , < ) = inf ( ran ( 𝑘𝑋 ↦ ( ( 𝑓𝑘 ) − 𝐴 ) ) , ℝ , < )
53 45 46 48 49 50 51 52 iunhoiioolem ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ) → 𝑓 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) )
54 39 53 eqelssd ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
55 20 54 pm2.61dan ( 𝜑 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )