| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iunhoiioo.k | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | iunhoiioo.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | iunhoiioo.a | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | iunhoiioo.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ* ) | 
						
							| 5 |  | nnn0 | ⊢ ℕ  ≠  ∅ | 
						
							| 6 |  | iunconst | ⊢ ( ℕ  ≠  ∅  →  ∪  𝑛  ∈  ℕ { ∅ }  =  { ∅ } ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ∪  𝑛  ∈  ℕ { ∅ }  =  { ∅ } | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑋  =  ∅  →  ∪  𝑛  ∈  ℕ { ∅ }  =  { ∅ } ) | 
						
							| 9 |  | ixpeq1 | ⊢ ( 𝑋  =  ∅  →  X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  =  X 𝑘  ∈  ∅ ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 ) ) | 
						
							| 10 |  | ixp0x | ⊢ X 𝑘  ∈  ∅ ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  =  { ∅ } | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑋  =  ∅  →  X 𝑘  ∈  ∅ ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  =  { ∅ } ) | 
						
							| 12 | 9 11 | eqtrd | ⊢ ( 𝑋  =  ∅  →  X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  =  { ∅ } ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑋  =  ∅  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  =  { ∅ } ) | 
						
							| 14 | 13 | iuneq2dv | ⊢ ( 𝑋  =  ∅  →  ∪  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  =  ∪  𝑛  ∈  ℕ { ∅ } ) | 
						
							| 15 |  | ixpeq1 | ⊢ ( 𝑋  =  ∅  →  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 )  =  X 𝑘  ∈  ∅ ( 𝐴 (,) 𝐵 ) ) | 
						
							| 16 |  | ixp0x | ⊢ X 𝑘  ∈  ∅ ( 𝐴 (,) 𝐵 )  =  { ∅ } | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑋  =  ∅  →  X 𝑘  ∈  ∅ ( 𝐴 (,) 𝐵 )  =  { ∅ } ) | 
						
							| 18 | 15 17 | eqtrd | ⊢ ( 𝑋  =  ∅  →  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 )  =  { ∅ } ) | 
						
							| 19 | 8 14 18 | 3eqtr4d | ⊢ ( 𝑋  =  ∅  →  ∪  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  =  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∪  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  =  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 21 |  | nfv | ⊢ Ⅎ 𝑘 𝑛  ∈  ℕ | 
						
							| 22 | 1 21 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑛  ∈  ℕ ) | 
						
							| 23 | 3 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ* ) | 
						
							| 24 | 23 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ* ) | 
						
							| 25 | 4 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ* ) | 
						
							| 26 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 27 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 28 | 27 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝑛  ∈  ℝ+ ) | 
						
							| 29 | 28 | rpreccld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 30 | 26 29 | ltaddrpd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝐴  <  ( 𝐴  +  ( 1  /  𝑛 ) ) ) | 
						
							| 31 | 4 | xrleidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐵  ≤  𝐵 ) | 
						
							| 32 | 31 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝐵  ≤  𝐵 ) | 
						
							| 33 |  | icossioo | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ( 𝐴  <  ( 𝐴  +  ( 1  /  𝑛 ) )  ∧  𝐵  ≤  𝐵 ) )  →  ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 34 | 24 25 30 32 33 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 35 | 22 34 | ixpssixp | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 36 | 35 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 37 |  | iunss | ⊢ ( ∪  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 )  ↔  ∀ 𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 38 | 36 37 | sylibr | ⊢ ( 𝜑  →  ∪  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  ∪  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  ⊆  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 40 |  | nfv | ⊢ Ⅎ 𝑘 ¬  𝑋  =  ∅ | 
						
							| 41 | 1 40 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  ¬  𝑋  =  ∅ ) | 
						
							| 42 |  | nfcv | ⊢ Ⅎ 𝑘 𝑓 | 
						
							| 43 |  | nfixp1 | ⊢ Ⅎ 𝑘 X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) | 
						
							| 44 | 42 43 | nfel | ⊢ Ⅎ 𝑘 𝑓  ∈  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) | 
						
							| 45 | 41 44 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  ∧  𝑓  ∈  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 46 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  ∧  𝑓  ∈  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) )  →  𝑋  ∈  Fin ) | 
						
							| 47 |  | neqne | ⊢ ( ¬  𝑋  =  ∅  →  𝑋  ≠  ∅ ) | 
						
							| 48 | 47 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  ∧  𝑓  ∈  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) )  →  𝑋  ≠  ∅ ) | 
						
							| 49 | 3 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  ∧  𝑓  ∈  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) )  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 50 | 4 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  ∧  𝑓  ∈  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) )  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ* ) | 
						
							| 51 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  ∧  𝑓  ∈  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) )  →  𝑓  ∈  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 52 |  | eqid | ⊢ inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝑓 ‘ 𝑘 )  −  𝐴 ) ) ,  ℝ ,   <  )  =  inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝑓 ‘ 𝑘 )  −  𝐴 ) ) ,  ℝ ,   <  ) | 
						
							| 53 | 45 46 48 49 50 51 52 | iunhoiioolem | ⊢ ( ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  ∧  𝑓  ∈  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) )  →  𝑓  ∈  ∪  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 ) ) | 
						
							| 54 | 39 53 | eqelssd | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  ∪  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  =  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 55 | 20 54 | pm2.61dan | ⊢ ( 𝜑  →  ∪  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  =  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) |