Step |
Hyp |
Ref |
Expression |
1 |
|
iunhoiioo.k |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
iunhoiioo.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
iunhoiioo.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
4 |
|
iunhoiioo.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ* ) |
5 |
|
nnn0 |
⊢ ℕ ≠ ∅ |
6 |
|
iunconst |
⊢ ( ℕ ≠ ∅ → ∪ 𝑛 ∈ ℕ { ∅ } = { ∅ } ) |
7 |
5 6
|
ax-mp |
⊢ ∪ 𝑛 ∈ ℕ { ∅ } = { ∅ } |
8 |
7
|
a1i |
⊢ ( 𝑋 = ∅ → ∪ 𝑛 ∈ ℕ { ∅ } = { ∅ } ) |
9 |
|
ixpeq1 |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘 ∈ ∅ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |
10 |
|
ixp0x |
⊢ X 𝑘 ∈ ∅ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = { ∅ } |
11 |
10
|
a1i |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ ∅ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = { ∅ } ) |
12 |
9 11
|
eqtrd |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = { ∅ } ) |
13 |
12
|
adantr |
⊢ ( ( 𝑋 = ∅ ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = { ∅ } ) |
14 |
13
|
iuneq2dv |
⊢ ( 𝑋 = ∅ → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = ∪ 𝑛 ∈ ℕ { ∅ } ) |
15 |
|
ixpeq1 |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) = X 𝑘 ∈ ∅ ( 𝐴 (,) 𝐵 ) ) |
16 |
|
ixp0x |
⊢ X 𝑘 ∈ ∅ ( 𝐴 (,) 𝐵 ) = { ∅ } |
17 |
16
|
a1i |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ ∅ ( 𝐴 (,) 𝐵 ) = { ∅ } ) |
18 |
15 17
|
eqtrd |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) = { ∅ } ) |
19 |
8 14 18
|
3eqtr4d |
⊢ ( 𝑋 = ∅ → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
21 |
|
nfv |
⊢ Ⅎ 𝑘 𝑛 ∈ ℕ |
22 |
1 21
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑛 ∈ ℕ ) |
23 |
3
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ* ) |
24 |
23
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ* ) |
25 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ* ) |
26 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
27 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
28 |
27
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝑛 ∈ ℝ+ ) |
29 |
28
|
rpreccld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
30 |
26 29
|
ltaddrpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 < ( 𝐴 + ( 1 / 𝑛 ) ) ) |
31 |
4
|
xrleidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ≤ 𝐵 ) |
32 |
31
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ≤ 𝐵 ) |
33 |
|
icossioo |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < ( 𝐴 + ( 1 / 𝑛 ) ) ∧ 𝐵 ≤ 𝐵 ) ) → ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
34 |
24 25 30 32 33
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
35 |
22 34
|
ixpssixp |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
36 |
35
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
37 |
|
iunss |
⊢ ( ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ↔ ∀ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
38 |
36 37
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
40 |
|
nfv |
⊢ Ⅎ 𝑘 ¬ 𝑋 = ∅ |
41 |
1 40
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ¬ 𝑋 = ∅ ) |
42 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑓 |
43 |
|
nfixp1 |
⊢ Ⅎ 𝑘 X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) |
44 |
42 43
|
nfel |
⊢ Ⅎ 𝑘 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) |
45 |
41 44
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
46 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) → 𝑋 ∈ Fin ) |
47 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
48 |
47
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) → 𝑋 ≠ ∅ ) |
49 |
3
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
50 |
4
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ* ) |
51 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
52 |
|
eqid |
⊢ inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝑓 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) = inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝑓 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) |
53 |
45 46 48 49 50 51 52
|
iunhoiioolem |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) → 𝑓 ∈ ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |
54 |
39 53
|
eqelssd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
55 |
20 54
|
pm2.61dan |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |