| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunhoiioo.k |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
iunhoiioo.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 3 |
|
iunhoiioo.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
| 4 |
|
iunhoiioo.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ* ) |
| 5 |
|
nnn0 |
⊢ ℕ ≠ ∅ |
| 6 |
|
iunconst |
⊢ ( ℕ ≠ ∅ → ∪ 𝑛 ∈ ℕ { ∅ } = { ∅ } ) |
| 7 |
5 6
|
ax-mp |
⊢ ∪ 𝑛 ∈ ℕ { ∅ } = { ∅ } |
| 8 |
7
|
a1i |
⊢ ( 𝑋 = ∅ → ∪ 𝑛 ∈ ℕ { ∅ } = { ∅ } ) |
| 9 |
|
ixpeq1 |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘 ∈ ∅ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |
| 10 |
|
ixp0x |
⊢ X 𝑘 ∈ ∅ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = { ∅ } |
| 11 |
10
|
a1i |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ ∅ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = { ∅ } ) |
| 12 |
9 11
|
eqtrd |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = { ∅ } ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑋 = ∅ ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = { ∅ } ) |
| 14 |
13
|
iuneq2dv |
⊢ ( 𝑋 = ∅ → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = ∪ 𝑛 ∈ ℕ { ∅ } ) |
| 15 |
|
ixpeq1 |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) = X 𝑘 ∈ ∅ ( 𝐴 (,) 𝐵 ) ) |
| 16 |
|
ixp0x |
⊢ X 𝑘 ∈ ∅ ( 𝐴 (,) 𝐵 ) = { ∅ } |
| 17 |
16
|
a1i |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ ∅ ( 𝐴 (,) 𝐵 ) = { ∅ } ) |
| 18 |
15 17
|
eqtrd |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) = { ∅ } ) |
| 19 |
8 14 18
|
3eqtr4d |
⊢ ( 𝑋 = ∅ → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 21 |
|
nfv |
⊢ Ⅎ 𝑘 𝑛 ∈ ℕ |
| 22 |
1 21
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑛 ∈ ℕ ) |
| 23 |
3
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ* ) |
| 24 |
23
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ* ) |
| 25 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ* ) |
| 26 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
| 27 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 28 |
27
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝑛 ∈ ℝ+ ) |
| 29 |
28
|
rpreccld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 30 |
26 29
|
ltaddrpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 < ( 𝐴 + ( 1 / 𝑛 ) ) ) |
| 31 |
4
|
xrleidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ≤ 𝐵 ) |
| 32 |
31
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ≤ 𝐵 ) |
| 33 |
|
icossioo |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < ( 𝐴 + ( 1 / 𝑛 ) ) ∧ 𝐵 ≤ 𝐵 ) ) → ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 34 |
24 25 30 32 33
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 35 |
22 34
|
ixpssixp |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 36 |
35
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 37 |
|
iunss |
⊢ ( ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ↔ ∀ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 38 |
36 37
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ⊆ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 40 |
|
nfv |
⊢ Ⅎ 𝑘 ¬ 𝑋 = ∅ |
| 41 |
1 40
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ¬ 𝑋 = ∅ ) |
| 42 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑓 |
| 43 |
|
nfixp1 |
⊢ Ⅎ 𝑘 X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) |
| 44 |
42 43
|
nfel |
⊢ Ⅎ 𝑘 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) |
| 45 |
41 44
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 46 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) → 𝑋 ∈ Fin ) |
| 47 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
| 48 |
47
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) → 𝑋 ≠ ∅ ) |
| 49 |
3
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
| 50 |
4
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ* ) |
| 51 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) → 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 52 |
|
eqid |
⊢ inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝑓 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) = inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝑓 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) |
| 53 |
45 46 48 49 50 51 52
|
iunhoiioolem |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) ∧ 𝑓 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) → 𝑓 ∈ ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |
| 54 |
39 53
|
eqelssd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 55 |
20 54
|
pm2.61dan |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) = X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |