Metamath Proof Explorer


Theorem iunhoiioo

Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iunhoiioo.k k φ
iunhoiioo.x φ X Fin
iunhoiioo.a φ k X A
iunhoiioo.b φ k X B *
Assertion iunhoiioo φ n k X A + 1 n B = k X A B

Proof

Step Hyp Ref Expression
1 iunhoiioo.k k φ
2 iunhoiioo.x φ X Fin
3 iunhoiioo.a φ k X A
4 iunhoiioo.b φ k X B *
5 nnn0
6 iunconst n =
7 5 6 ax-mp n =
8 7 a1i X = n =
9 ixpeq1 X = k X A + 1 n B = k A + 1 n B
10 ixp0x k A + 1 n B =
11 10 a1i X = k A + 1 n B =
12 9 11 eqtrd X = k X A + 1 n B =
13 12 adantr X = n k X A + 1 n B =
14 13 iuneq2dv X = n k X A + 1 n B = n
15 ixpeq1 X = k X A B = k A B
16 ixp0x k A B =
17 16 a1i X = k A B =
18 15 17 eqtrd X = k X A B =
19 8 14 18 3eqtr4d X = n k X A + 1 n B = k X A B
20 19 adantl φ X = n k X A + 1 n B = k X A B
21 nfv k n
22 1 21 nfan k φ n
23 3 rexrd φ k X A *
24 23 adantlr φ n k X A *
25 4 adantlr φ n k X B *
26 3 adantlr φ n k X A
27 nnrp n n +
28 27 ad2antlr φ n k X n +
29 28 rpreccld φ n k X 1 n +
30 26 29 ltaddrpd φ n k X A < A + 1 n
31 4 xrleidd φ k X B B
32 31 adantlr φ n k X B B
33 icossioo A * B * A < A + 1 n B B A + 1 n B A B
34 24 25 30 32 33 syl22anc φ n k X A + 1 n B A B
35 22 34 ixpssixp φ n k X A + 1 n B k X A B
36 35 ralrimiva φ n k X A + 1 n B k X A B
37 iunss n k X A + 1 n B k X A B n k X A + 1 n B k X A B
38 36 37 sylibr φ n k X A + 1 n B k X A B
39 38 adantr φ ¬ X = n k X A + 1 n B k X A B
40 nfv k ¬ X =
41 1 40 nfan k φ ¬ X =
42 nfcv _ k f
43 nfixp1 _ k k X A B
44 42 43 nfel k f k X A B
45 41 44 nfan k φ ¬ X = f k X A B
46 2 ad2antrr φ ¬ X = f k X A B X Fin
47 neqne ¬ X = X
48 47 ad2antlr φ ¬ X = f k X A B X
49 3 ad4ant14 φ ¬ X = f k X A B k X A
50 4 ad4ant14 φ ¬ X = f k X A B k X B *
51 simpr φ ¬ X = f k X A B f k X A B
52 eqid sup ran k X f k A < = sup ran k X f k A <
53 45 46 48 49 50 51 52 iunhoiioolem φ ¬ X = f k X A B f n k X A + 1 n B
54 39 53 eqelssd φ ¬ X = n k X A + 1 n B = k X A B
55 20 54 pm2.61dan φ n k X A + 1 n B = k X A B