Metamath Proof Explorer


Theorem iunhoiioo

Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iunhoiioo.k kφ
iunhoiioo.x φXFin
iunhoiioo.a φkXA
iunhoiioo.b φkXB*
Assertion iunhoiioo φnkXA+1nB=kXAB

Proof

Step Hyp Ref Expression
1 iunhoiioo.k kφ
2 iunhoiioo.x φXFin
3 iunhoiioo.a φkXA
4 iunhoiioo.b φkXB*
5 nnn0
6 iunconst n=
7 5 6 ax-mp n=
8 7 a1i X=n=
9 ixpeq1 X=kXA+1nB=kA+1nB
10 ixp0x kA+1nB=
11 10 a1i X=kA+1nB=
12 9 11 eqtrd X=kXA+1nB=
13 12 adantr X=nkXA+1nB=
14 13 iuneq2dv X=nkXA+1nB=n
15 ixpeq1 X=kXAB=kAB
16 ixp0x kAB=
17 16 a1i X=kAB=
18 15 17 eqtrd X=kXAB=
19 8 14 18 3eqtr4d X=nkXA+1nB=kXAB
20 19 adantl φX=nkXA+1nB=kXAB
21 nfv kn
22 1 21 nfan kφn
23 3 rexrd φkXA*
24 23 adantlr φnkXA*
25 4 adantlr φnkXB*
26 3 adantlr φnkXA
27 nnrp nn+
28 27 ad2antlr φnkXn+
29 28 rpreccld φnkX1n+
30 26 29 ltaddrpd φnkXA<A+1n
31 4 xrleidd φkXBB
32 31 adantlr φnkXBB
33 icossioo A*B*A<A+1nBBA+1nBAB
34 24 25 30 32 33 syl22anc φnkXA+1nBAB
35 22 34 ixpssixp φnkXA+1nBkXAB
36 35 ralrimiva φnkXA+1nBkXAB
37 iunss nkXA+1nBkXABnkXA+1nBkXAB
38 36 37 sylibr φnkXA+1nBkXAB
39 38 adantr φ¬X=nkXA+1nBkXAB
40 nfv k¬X=
41 1 40 nfan kφ¬X=
42 nfcv _kf
43 nfixp1 _kkXAB
44 42 43 nfel kfkXAB
45 41 44 nfan kφ¬X=fkXAB
46 2 ad2antrr φ¬X=fkXABXFin
47 neqne ¬X=X
48 47 ad2antlr φ¬X=fkXABX
49 3 ad4ant14 φ¬X=fkXABkXA
50 4 ad4ant14 φ¬X=fkXABkXB*
51 simpr φ¬X=fkXABfkXAB
52 eqid suprankXfkA<=suprankXfkA<
53 45 46 48 49 50 51 52 iunhoiioolem φ¬X=fkXABfnkXA+1nB
54 39 53 eqelssd φ¬X=nkXA+1nB=kXAB
55 20 54 pm2.61dan φnkXA+1nB=kXAB