| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iunhoiioo.k |  |-  F/ k ph | 
						
							| 2 |  | iunhoiioo.x |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | iunhoiioo.a |  |-  ( ( ph /\ k e. X ) -> A e. RR ) | 
						
							| 4 |  | iunhoiioo.b |  |-  ( ( ph /\ k e. X ) -> B e. RR* ) | 
						
							| 5 |  | nnn0 |  |-  NN =/= (/) | 
						
							| 6 |  | iunconst |  |-  ( NN =/= (/) -> U_ n e. NN { (/) } = { (/) } ) | 
						
							| 7 | 5 6 | ax-mp |  |-  U_ n e. NN { (/) } = { (/) } | 
						
							| 8 | 7 | a1i |  |-  ( X = (/) -> U_ n e. NN { (/) } = { (/) } ) | 
						
							| 9 |  | ixpeq1 |  |-  ( X = (/) -> X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = X_ k e. (/) ( ( A + ( 1 / n ) ) [,) B ) ) | 
						
							| 10 |  | ixp0x |  |-  X_ k e. (/) ( ( A + ( 1 / n ) ) [,) B ) = { (/) } | 
						
							| 11 | 10 | a1i |  |-  ( X = (/) -> X_ k e. (/) ( ( A + ( 1 / n ) ) [,) B ) = { (/) } ) | 
						
							| 12 | 9 11 | eqtrd |  |-  ( X = (/) -> X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = { (/) } ) | 
						
							| 13 | 12 | adantr |  |-  ( ( X = (/) /\ n e. NN ) -> X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = { (/) } ) | 
						
							| 14 | 13 | iuneq2dv |  |-  ( X = (/) -> U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = U_ n e. NN { (/) } ) | 
						
							| 15 |  | ixpeq1 |  |-  ( X = (/) -> X_ k e. X ( A (,) B ) = X_ k e. (/) ( A (,) B ) ) | 
						
							| 16 |  | ixp0x |  |-  X_ k e. (/) ( A (,) B ) = { (/) } | 
						
							| 17 | 16 | a1i |  |-  ( X = (/) -> X_ k e. (/) ( A (,) B ) = { (/) } ) | 
						
							| 18 | 15 17 | eqtrd |  |-  ( X = (/) -> X_ k e. X ( A (,) B ) = { (/) } ) | 
						
							| 19 | 8 14 18 | 3eqtr4d |  |-  ( X = (/) -> U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = X_ k e. X ( A (,) B ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ph /\ X = (/) ) -> U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = X_ k e. X ( A (,) B ) ) | 
						
							| 21 |  | nfv |  |-  F/ k n e. NN | 
						
							| 22 | 1 21 | nfan |  |-  F/ k ( ph /\ n e. NN ) | 
						
							| 23 | 3 | rexrd |  |-  ( ( ph /\ k e. X ) -> A e. RR* ) | 
						
							| 24 | 23 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> A e. RR* ) | 
						
							| 25 | 4 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> B e. RR* ) | 
						
							| 26 | 3 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> A e. RR ) | 
						
							| 27 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 28 | 27 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> n e. RR+ ) | 
						
							| 29 | 28 | rpreccld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR+ ) | 
						
							| 30 | 26 29 | ltaddrpd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> A < ( A + ( 1 / n ) ) ) | 
						
							| 31 | 4 | xrleidd |  |-  ( ( ph /\ k e. X ) -> B <_ B ) | 
						
							| 32 | 31 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> B <_ B ) | 
						
							| 33 |  | icossioo |  |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < ( A + ( 1 / n ) ) /\ B <_ B ) ) -> ( ( A + ( 1 / n ) ) [,) B ) C_ ( A (,) B ) ) | 
						
							| 34 | 24 25 30 32 33 | syl22anc |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A + ( 1 / n ) ) [,) B ) C_ ( A (,) B ) ) | 
						
							| 35 | 22 34 | ixpssixp |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) C_ X_ k e. X ( A (,) B ) ) | 
						
							| 36 | 35 | ralrimiva |  |-  ( ph -> A. n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) C_ X_ k e. X ( A (,) B ) ) | 
						
							| 37 |  | iunss |  |-  ( U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) C_ X_ k e. X ( A (,) B ) <-> A. n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) C_ X_ k e. X ( A (,) B ) ) | 
						
							| 38 | 36 37 | sylibr |  |-  ( ph -> U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) C_ X_ k e. X ( A (,) B ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ -. X = (/) ) -> U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) C_ X_ k e. X ( A (,) B ) ) | 
						
							| 40 |  | nfv |  |-  F/ k -. X = (/) | 
						
							| 41 | 1 40 | nfan |  |-  F/ k ( ph /\ -. X = (/) ) | 
						
							| 42 |  | nfcv |  |-  F/_ k f | 
						
							| 43 |  | nfixp1 |  |-  F/_ k X_ k e. X ( A (,) B ) | 
						
							| 44 | 42 43 | nfel |  |-  F/ k f e. X_ k e. X ( A (,) B ) | 
						
							| 45 | 41 44 | nfan |  |-  F/ k ( ( ph /\ -. X = (/) ) /\ f e. X_ k e. X ( A (,) B ) ) | 
						
							| 46 | 2 | ad2antrr |  |-  ( ( ( ph /\ -. X = (/) ) /\ f e. X_ k e. X ( A (,) B ) ) -> X e. Fin ) | 
						
							| 47 |  | neqne |  |-  ( -. X = (/) -> X =/= (/) ) | 
						
							| 48 | 47 | ad2antlr |  |-  ( ( ( ph /\ -. X = (/) ) /\ f e. X_ k e. X ( A (,) B ) ) -> X =/= (/) ) | 
						
							| 49 | 3 | ad4ant14 |  |-  ( ( ( ( ph /\ -. X = (/) ) /\ f e. X_ k e. X ( A (,) B ) ) /\ k e. X ) -> A e. RR ) | 
						
							| 50 | 4 | ad4ant14 |  |-  ( ( ( ( ph /\ -. X = (/) ) /\ f e. X_ k e. X ( A (,) B ) ) /\ k e. X ) -> B e. RR* ) | 
						
							| 51 |  | simpr |  |-  ( ( ( ph /\ -. X = (/) ) /\ f e. X_ k e. X ( A (,) B ) ) -> f e. X_ k e. X ( A (,) B ) ) | 
						
							| 52 |  | eqid |  |-  inf ( ran ( k e. X |-> ( ( f ` k ) - A ) ) , RR , < ) = inf ( ran ( k e. X |-> ( ( f ` k ) - A ) ) , RR , < ) | 
						
							| 53 | 45 46 48 49 50 51 52 | iunhoiioolem |  |-  ( ( ( ph /\ -. X = (/) ) /\ f e. X_ k e. X ( A (,) B ) ) -> f e. U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) | 
						
							| 54 | 39 53 | eqelssd |  |-  ( ( ph /\ -. X = (/) ) -> U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = X_ k e. X ( A (,) B ) ) | 
						
							| 55 | 20 54 | pm2.61dan |  |-  ( ph -> U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = X_ k e. X ( A (,) B ) ) |