Step |
Hyp |
Ref |
Expression |
1 |
|
iunhoiioo.k |
|- F/ k ph |
2 |
|
iunhoiioo.x |
|- ( ph -> X e. Fin ) |
3 |
|
iunhoiioo.a |
|- ( ( ph /\ k e. X ) -> A e. RR ) |
4 |
|
iunhoiioo.b |
|- ( ( ph /\ k e. X ) -> B e. RR* ) |
5 |
|
nnn0 |
|- NN =/= (/) |
6 |
|
iunconst |
|- ( NN =/= (/) -> U_ n e. NN { (/) } = { (/) } ) |
7 |
5 6
|
ax-mp |
|- U_ n e. NN { (/) } = { (/) } |
8 |
7
|
a1i |
|- ( X = (/) -> U_ n e. NN { (/) } = { (/) } ) |
9 |
|
ixpeq1 |
|- ( X = (/) -> X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = X_ k e. (/) ( ( A + ( 1 / n ) ) [,) B ) ) |
10 |
|
ixp0x |
|- X_ k e. (/) ( ( A + ( 1 / n ) ) [,) B ) = { (/) } |
11 |
10
|
a1i |
|- ( X = (/) -> X_ k e. (/) ( ( A + ( 1 / n ) ) [,) B ) = { (/) } ) |
12 |
9 11
|
eqtrd |
|- ( X = (/) -> X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = { (/) } ) |
13 |
12
|
adantr |
|- ( ( X = (/) /\ n e. NN ) -> X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = { (/) } ) |
14 |
13
|
iuneq2dv |
|- ( X = (/) -> U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = U_ n e. NN { (/) } ) |
15 |
|
ixpeq1 |
|- ( X = (/) -> X_ k e. X ( A (,) B ) = X_ k e. (/) ( A (,) B ) ) |
16 |
|
ixp0x |
|- X_ k e. (/) ( A (,) B ) = { (/) } |
17 |
16
|
a1i |
|- ( X = (/) -> X_ k e. (/) ( A (,) B ) = { (/) } ) |
18 |
15 17
|
eqtrd |
|- ( X = (/) -> X_ k e. X ( A (,) B ) = { (/) } ) |
19 |
8 14 18
|
3eqtr4d |
|- ( X = (/) -> U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = X_ k e. X ( A (,) B ) ) |
20 |
19
|
adantl |
|- ( ( ph /\ X = (/) ) -> U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = X_ k e. X ( A (,) B ) ) |
21 |
|
nfv |
|- F/ k n e. NN |
22 |
1 21
|
nfan |
|- F/ k ( ph /\ n e. NN ) |
23 |
3
|
rexrd |
|- ( ( ph /\ k e. X ) -> A e. RR* ) |
24 |
23
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> A e. RR* ) |
25 |
4
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> B e. RR* ) |
26 |
3
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> A e. RR ) |
27 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
28 |
27
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> n e. RR+ ) |
29 |
28
|
rpreccld |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR+ ) |
30 |
26 29
|
ltaddrpd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> A < ( A + ( 1 / n ) ) ) |
31 |
4
|
xrleidd |
|- ( ( ph /\ k e. X ) -> B <_ B ) |
32 |
31
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> B <_ B ) |
33 |
|
icossioo |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < ( A + ( 1 / n ) ) /\ B <_ B ) ) -> ( ( A + ( 1 / n ) ) [,) B ) C_ ( A (,) B ) ) |
34 |
24 25 30 32 33
|
syl22anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( A + ( 1 / n ) ) [,) B ) C_ ( A (,) B ) ) |
35 |
22 34
|
ixpssixp |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) C_ X_ k e. X ( A (,) B ) ) |
36 |
35
|
ralrimiva |
|- ( ph -> A. n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) C_ X_ k e. X ( A (,) B ) ) |
37 |
|
iunss |
|- ( U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) C_ X_ k e. X ( A (,) B ) <-> A. n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) C_ X_ k e. X ( A (,) B ) ) |
38 |
36 37
|
sylibr |
|- ( ph -> U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) C_ X_ k e. X ( A (,) B ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) C_ X_ k e. X ( A (,) B ) ) |
40 |
|
nfv |
|- F/ k -. X = (/) |
41 |
1 40
|
nfan |
|- F/ k ( ph /\ -. X = (/) ) |
42 |
|
nfcv |
|- F/_ k f |
43 |
|
nfixp1 |
|- F/_ k X_ k e. X ( A (,) B ) |
44 |
42 43
|
nfel |
|- F/ k f e. X_ k e. X ( A (,) B ) |
45 |
41 44
|
nfan |
|- F/ k ( ( ph /\ -. X = (/) ) /\ f e. X_ k e. X ( A (,) B ) ) |
46 |
2
|
ad2antrr |
|- ( ( ( ph /\ -. X = (/) ) /\ f e. X_ k e. X ( A (,) B ) ) -> X e. Fin ) |
47 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
48 |
47
|
ad2antlr |
|- ( ( ( ph /\ -. X = (/) ) /\ f e. X_ k e. X ( A (,) B ) ) -> X =/= (/) ) |
49 |
3
|
ad4ant14 |
|- ( ( ( ( ph /\ -. X = (/) ) /\ f e. X_ k e. X ( A (,) B ) ) /\ k e. X ) -> A e. RR ) |
50 |
4
|
ad4ant14 |
|- ( ( ( ( ph /\ -. X = (/) ) /\ f e. X_ k e. X ( A (,) B ) ) /\ k e. X ) -> B e. RR* ) |
51 |
|
simpr |
|- ( ( ( ph /\ -. X = (/) ) /\ f e. X_ k e. X ( A (,) B ) ) -> f e. X_ k e. X ( A (,) B ) ) |
52 |
|
eqid |
|- inf ( ran ( k e. X |-> ( ( f ` k ) - A ) ) , RR , < ) = inf ( ran ( k e. X |-> ( ( f ` k ) - A ) ) , RR , < ) |
53 |
45 46 48 49 50 51 52
|
iunhoiioolem |
|- ( ( ( ph /\ -. X = (/) ) /\ f e. X_ k e. X ( A (,) B ) ) -> f e. U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) |
54 |
39 53
|
eqelssd |
|- ( ( ph /\ -. X = (/) ) -> U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = X_ k e. X ( A (,) B ) ) |
55 |
20 54
|
pm2.61dan |
|- ( ph -> U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) = X_ k e. X ( A (,) B ) ) |