| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iunhoiioolem.K |  |-  F/ k ph | 
						
							| 2 |  | iunhoiioolem.x |  |-  ( ph -> X e. Fin ) | 
						
							| 3 |  | iunhoiioolem.n |  |-  ( ph -> X =/= (/) ) | 
						
							| 4 |  | iunhoiioolem.a |  |-  ( ( ph /\ k e. X ) -> A e. RR ) | 
						
							| 5 |  | iunhoiioolem.b |  |-  ( ( ph /\ k e. X ) -> B e. RR* ) | 
						
							| 6 |  | iunhoiioolem.f |  |-  ( ph -> F e. X_ k e. X ( A (,) B ) ) | 
						
							| 7 |  | iunhoiioolem.c |  |-  C = inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) | 
						
							| 8 |  | eqid |  |-  ( k e. X |-> ( ( F ` k ) - A ) ) = ( k e. X |-> ( ( F ` k ) - A ) ) | 
						
							| 9 |  | ixpf |  |-  ( F e. X_ k e. X ( A (,) B ) -> F : X --> U_ k e. X ( A (,) B ) ) | 
						
							| 10 | 6 9 | syl |  |-  ( ph -> F : X --> U_ k e. X ( A (,) B ) ) | 
						
							| 11 |  | ioossre |  |-  ( A (,) B ) C_ RR | 
						
							| 12 | 11 | rgenw |  |-  A. k e. X ( A (,) B ) C_ RR | 
						
							| 13 | 12 | a1i |  |-  ( ph -> A. k e. X ( A (,) B ) C_ RR ) | 
						
							| 14 |  | iunss |  |-  ( U_ k e. X ( A (,) B ) C_ RR <-> A. k e. X ( A (,) B ) C_ RR ) | 
						
							| 15 | 13 14 | sylibr |  |-  ( ph -> U_ k e. X ( A (,) B ) C_ RR ) | 
						
							| 16 | 10 15 | fssd |  |-  ( ph -> F : X --> RR ) | 
						
							| 17 | 16 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( F ` k ) e. RR ) | 
						
							| 18 | 17 4 | resubcld |  |-  ( ( ph /\ k e. X ) -> ( ( F ` k ) - A ) e. RR ) | 
						
							| 19 | 4 | rexrd |  |-  ( ( ph /\ k e. X ) -> A e. RR* ) | 
						
							| 20 | 6 | adantr |  |-  ( ( ph /\ k e. X ) -> F e. X_ k e. X ( A (,) B ) ) | 
						
							| 21 |  | simpr |  |-  ( ( ph /\ k e. X ) -> k e. X ) | 
						
							| 22 |  | fvixp2 |  |-  ( ( F e. X_ k e. X ( A (,) B ) /\ k e. X ) -> ( F ` k ) e. ( A (,) B ) ) | 
						
							| 23 | 20 21 22 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( F ` k ) e. ( A (,) B ) ) | 
						
							| 24 |  | ioogtlb |  |-  ( ( A e. RR* /\ B e. RR* /\ ( F ` k ) e. ( A (,) B ) ) -> A < ( F ` k ) ) | 
						
							| 25 | 19 5 23 24 | syl3anc |  |-  ( ( ph /\ k e. X ) -> A < ( F ` k ) ) | 
						
							| 26 | 4 17 | posdifd |  |-  ( ( ph /\ k e. X ) -> ( A < ( F ` k ) <-> 0 < ( ( F ` k ) - A ) ) ) | 
						
							| 27 | 25 26 | mpbid |  |-  ( ( ph /\ k e. X ) -> 0 < ( ( F ` k ) - A ) ) | 
						
							| 28 | 18 27 | elrpd |  |-  ( ( ph /\ k e. X ) -> ( ( F ` k ) - A ) e. RR+ ) | 
						
							| 29 | 1 8 28 | rnmptssd |  |-  ( ph -> ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR+ ) | 
						
							| 30 |  | ltso |  |-  < Or RR | 
						
							| 31 | 30 | a1i |  |-  ( ph -> < Or RR ) | 
						
							| 32 | 8 | rnmptfi |  |-  ( X e. Fin -> ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin ) | 
						
							| 33 | 2 32 | syl |  |-  ( ph -> ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin ) | 
						
							| 34 | 1 18 8 3 | rnmptn0 |  |-  ( ph -> ran ( k e. X |-> ( ( F ` k ) - A ) ) =/= (/) ) | 
						
							| 35 | 1 8 18 | rnmptssd |  |-  ( ph -> ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR ) | 
						
							| 36 |  | fiinfcl |  |-  ( ( < Or RR /\ ( ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin /\ ran ( k e. X |-> ( ( F ` k ) - A ) ) =/= (/) /\ ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR ) ) -> inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) | 
						
							| 37 | 31 33 34 35 36 | syl13anc |  |-  ( ph -> inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) | 
						
							| 38 | 7 37 | eqeltrid |  |-  ( ph -> C e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) | 
						
							| 39 | 29 38 | sseldd |  |-  ( ph -> C e. RR+ ) | 
						
							| 40 |  | rpgtrecnn |  |-  ( C e. RR+ -> E. n e. NN ( 1 / n ) < C ) | 
						
							| 41 | 39 40 | syl |  |-  ( ph -> E. n e. NN ( 1 / n ) < C ) | 
						
							| 42 | 6 | elexd |  |-  ( ph -> F e. _V ) | 
						
							| 43 | 42 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> F e. _V ) | 
						
							| 44 | 10 | ffnd |  |-  ( ph -> F Fn X ) | 
						
							| 45 | 44 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> F Fn X ) | 
						
							| 46 |  | nfv |  |-  F/ k n e. NN | 
						
							| 47 | 1 46 | nfan |  |-  F/ k ( ph /\ n e. NN ) | 
						
							| 48 |  | nfcv |  |-  F/_ k ( 1 / n ) | 
						
							| 49 |  | nfcv |  |-  F/_ k < | 
						
							| 50 |  | nfmpt1 |  |-  F/_ k ( k e. X |-> ( ( F ` k ) - A ) ) | 
						
							| 51 | 50 | nfrn |  |-  F/_ k ran ( k e. X |-> ( ( F ` k ) - A ) ) | 
						
							| 52 |  | nfcv |  |-  F/_ k RR | 
						
							| 53 | 51 52 49 | nfinf |  |-  F/_ k inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) | 
						
							| 54 | 7 53 | nfcxfr |  |-  F/_ k C | 
						
							| 55 | 48 49 54 | nfbr |  |-  F/ k ( 1 / n ) < C | 
						
							| 56 | 47 55 | nfan |  |-  F/ k ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) | 
						
							| 57 | 4 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> A e. RR ) | 
						
							| 58 |  | nnrecre |  |-  ( n e. NN -> ( 1 / n ) e. RR ) | 
						
							| 59 | 58 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR ) | 
						
							| 60 | 57 59 | readdcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A + ( 1 / n ) ) e. RR ) | 
						
							| 61 | 60 | rexrd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A + ( 1 / n ) ) e. RR* ) | 
						
							| 62 | 61 | adantlr |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( A + ( 1 / n ) ) e. RR* ) | 
						
							| 63 | 5 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> B e. RR* ) | 
						
							| 64 | 63 | adantlr |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> B e. RR* ) | 
						
							| 65 |  | ressxr |  |-  RR C_ RR* | 
						
							| 66 | 65 | a1i |  |-  ( ph -> RR C_ RR* ) | 
						
							| 67 | 16 66 | fssd |  |-  ( ph -> F : X --> RR* ) | 
						
							| 68 | 67 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> F : X --> RR* ) | 
						
							| 69 | 68 | ffvelcdmda |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( F ` k ) e. RR* ) | 
						
							| 70 | 60 | adantlr |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( A + ( 1 / n ) ) e. RR ) | 
						
							| 71 | 17 | ad4ant14 |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( F ` k ) e. RR ) | 
						
							| 72 | 59 | adantlr |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( 1 / n ) e. RR ) | 
						
							| 73 | 35 38 | sseldd |  |-  ( ph -> C e. RR ) | 
						
							| 74 | 73 | ad3antrrr |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> C e. RR ) | 
						
							| 75 | 18 | ad4ant14 |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( ( F ` k ) - A ) e. RR ) | 
						
							| 76 |  | simplr |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( 1 / n ) < C ) | 
						
							| 77 | 35 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR ) | 
						
							| 78 | 33 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin ) | 
						
							| 79 |  | id |  |-  ( k e. X -> k e. X ) | 
						
							| 80 |  | ovexd |  |-  ( k e. X -> ( ( F ` k ) - A ) e. _V ) | 
						
							| 81 | 8 | elrnmpt1 |  |-  ( ( k e. X /\ ( ( F ` k ) - A ) e. _V ) -> ( ( F ` k ) - A ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) | 
						
							| 82 | 79 80 81 | syl2anc |  |-  ( k e. X -> ( ( F ` k ) - A ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) | 
						
							| 83 | 82 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( F ` k ) - A ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) | 
						
							| 84 |  | infrefilb |  |-  ( ( ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR /\ ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin /\ ( ( F ` k ) - A ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) -> inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) <_ ( ( F ` k ) - A ) ) | 
						
							| 85 | 77 78 83 84 | syl3anc |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) <_ ( ( F ` k ) - A ) ) | 
						
							| 86 | 7 85 | eqbrtrid |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> C <_ ( ( F ` k ) - A ) ) | 
						
							| 87 | 86 | adantlr |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> C <_ ( ( F ` k ) - A ) ) | 
						
							| 88 | 72 74 75 76 87 | ltletrd |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( 1 / n ) < ( ( F ` k ) - A ) ) | 
						
							| 89 | 57 | adantlr |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> A e. RR ) | 
						
							| 90 | 89 72 71 | ltaddsub2d |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( ( A + ( 1 / n ) ) < ( F ` k ) <-> ( 1 / n ) < ( ( F ` k ) - A ) ) ) | 
						
							| 91 | 88 90 | mpbird |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( A + ( 1 / n ) ) < ( F ` k ) ) | 
						
							| 92 | 70 71 91 | ltled |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( A + ( 1 / n ) ) <_ ( F ` k ) ) | 
						
							| 93 |  | iooltub |  |-  ( ( A e. RR* /\ B e. RR* /\ ( F ` k ) e. ( A (,) B ) ) -> ( F ` k ) < B ) | 
						
							| 94 | 19 5 23 93 | syl3anc |  |-  ( ( ph /\ k e. X ) -> ( F ` k ) < B ) | 
						
							| 95 | 94 | ad4ant14 |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( F ` k ) < B ) | 
						
							| 96 | 62 64 69 92 95 | elicod |  |-  ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) | 
						
							| 97 | 96 | ex |  |-  ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> ( k e. X -> ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) ) | 
						
							| 98 | 56 97 | ralrimi |  |-  ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> A. k e. X ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) | 
						
							| 99 | 43 45 98 | 3jca |  |-  ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> ( F e. _V /\ F Fn X /\ A. k e. X ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) ) | 
						
							| 100 |  | elixp2 |  |-  ( F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) <-> ( F e. _V /\ F Fn X /\ A. k e. X ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) ) | 
						
							| 101 | 99 100 | sylibr |  |-  ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) | 
						
							| 102 | 101 | ex |  |-  ( ( ph /\ n e. NN ) -> ( ( 1 / n ) < C -> F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) ) | 
						
							| 103 | 102 | reximdva |  |-  ( ph -> ( E. n e. NN ( 1 / n ) < C -> E. n e. NN F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) ) | 
						
							| 104 | 41 103 | mpd |  |-  ( ph -> E. n e. NN F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) | 
						
							| 105 |  | eliun |  |-  ( F e. U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) <-> E. n e. NN F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) | 
						
							| 106 | 104 105 | sylibr |  |-  ( ph -> F e. U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) |