| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunhoiioolem.K |
|- F/ k ph |
| 2 |
|
iunhoiioolem.x |
|- ( ph -> X e. Fin ) |
| 3 |
|
iunhoiioolem.n |
|- ( ph -> X =/= (/) ) |
| 4 |
|
iunhoiioolem.a |
|- ( ( ph /\ k e. X ) -> A e. RR ) |
| 5 |
|
iunhoiioolem.b |
|- ( ( ph /\ k e. X ) -> B e. RR* ) |
| 6 |
|
iunhoiioolem.f |
|- ( ph -> F e. X_ k e. X ( A (,) B ) ) |
| 7 |
|
iunhoiioolem.c |
|- C = inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) |
| 8 |
|
eqid |
|- ( k e. X |-> ( ( F ` k ) - A ) ) = ( k e. X |-> ( ( F ` k ) - A ) ) |
| 9 |
|
ixpf |
|- ( F e. X_ k e. X ( A (,) B ) -> F : X --> U_ k e. X ( A (,) B ) ) |
| 10 |
6 9
|
syl |
|- ( ph -> F : X --> U_ k e. X ( A (,) B ) ) |
| 11 |
|
ioossre |
|- ( A (,) B ) C_ RR |
| 12 |
11
|
rgenw |
|- A. k e. X ( A (,) B ) C_ RR |
| 13 |
12
|
a1i |
|- ( ph -> A. k e. X ( A (,) B ) C_ RR ) |
| 14 |
|
iunss |
|- ( U_ k e. X ( A (,) B ) C_ RR <-> A. k e. X ( A (,) B ) C_ RR ) |
| 15 |
13 14
|
sylibr |
|- ( ph -> U_ k e. X ( A (,) B ) C_ RR ) |
| 16 |
10 15
|
fssd |
|- ( ph -> F : X --> RR ) |
| 17 |
16
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( F ` k ) e. RR ) |
| 18 |
17 4
|
resubcld |
|- ( ( ph /\ k e. X ) -> ( ( F ` k ) - A ) e. RR ) |
| 19 |
4
|
rexrd |
|- ( ( ph /\ k e. X ) -> A e. RR* ) |
| 20 |
6
|
adantr |
|- ( ( ph /\ k e. X ) -> F e. X_ k e. X ( A (,) B ) ) |
| 21 |
|
simpr |
|- ( ( ph /\ k e. X ) -> k e. X ) |
| 22 |
|
fvixp2 |
|- ( ( F e. X_ k e. X ( A (,) B ) /\ k e. X ) -> ( F ` k ) e. ( A (,) B ) ) |
| 23 |
20 21 22
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( F ` k ) e. ( A (,) B ) ) |
| 24 |
|
ioogtlb |
|- ( ( A e. RR* /\ B e. RR* /\ ( F ` k ) e. ( A (,) B ) ) -> A < ( F ` k ) ) |
| 25 |
19 5 23 24
|
syl3anc |
|- ( ( ph /\ k e. X ) -> A < ( F ` k ) ) |
| 26 |
4 17
|
posdifd |
|- ( ( ph /\ k e. X ) -> ( A < ( F ` k ) <-> 0 < ( ( F ` k ) - A ) ) ) |
| 27 |
25 26
|
mpbid |
|- ( ( ph /\ k e. X ) -> 0 < ( ( F ` k ) - A ) ) |
| 28 |
18 27
|
elrpd |
|- ( ( ph /\ k e. X ) -> ( ( F ` k ) - A ) e. RR+ ) |
| 29 |
1 8 28
|
rnmptssd |
|- ( ph -> ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR+ ) |
| 30 |
|
ltso |
|- < Or RR |
| 31 |
30
|
a1i |
|- ( ph -> < Or RR ) |
| 32 |
8
|
rnmptfi |
|- ( X e. Fin -> ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin ) |
| 33 |
2 32
|
syl |
|- ( ph -> ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin ) |
| 34 |
1 18 8 3
|
rnmptn0 |
|- ( ph -> ran ( k e. X |-> ( ( F ` k ) - A ) ) =/= (/) ) |
| 35 |
1 8 18
|
rnmptssd |
|- ( ph -> ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR ) |
| 36 |
|
fiinfcl |
|- ( ( < Or RR /\ ( ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin /\ ran ( k e. X |-> ( ( F ` k ) - A ) ) =/= (/) /\ ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR ) ) -> inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) |
| 37 |
31 33 34 35 36
|
syl13anc |
|- ( ph -> inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) |
| 38 |
7 37
|
eqeltrid |
|- ( ph -> C e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) |
| 39 |
29 38
|
sseldd |
|- ( ph -> C e. RR+ ) |
| 40 |
|
rpgtrecnn |
|- ( C e. RR+ -> E. n e. NN ( 1 / n ) < C ) |
| 41 |
39 40
|
syl |
|- ( ph -> E. n e. NN ( 1 / n ) < C ) |
| 42 |
6
|
elexd |
|- ( ph -> F e. _V ) |
| 43 |
42
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> F e. _V ) |
| 44 |
10
|
ffnd |
|- ( ph -> F Fn X ) |
| 45 |
44
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> F Fn X ) |
| 46 |
|
nfv |
|- F/ k n e. NN |
| 47 |
1 46
|
nfan |
|- F/ k ( ph /\ n e. NN ) |
| 48 |
|
nfcv |
|- F/_ k ( 1 / n ) |
| 49 |
|
nfcv |
|- F/_ k < |
| 50 |
|
nfmpt1 |
|- F/_ k ( k e. X |-> ( ( F ` k ) - A ) ) |
| 51 |
50
|
nfrn |
|- F/_ k ran ( k e. X |-> ( ( F ` k ) - A ) ) |
| 52 |
|
nfcv |
|- F/_ k RR |
| 53 |
51 52 49
|
nfinf |
|- F/_ k inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) |
| 54 |
7 53
|
nfcxfr |
|- F/_ k C |
| 55 |
48 49 54
|
nfbr |
|- F/ k ( 1 / n ) < C |
| 56 |
47 55
|
nfan |
|- F/ k ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) |
| 57 |
4
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> A e. RR ) |
| 58 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
| 59 |
58
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR ) |
| 60 |
57 59
|
readdcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A + ( 1 / n ) ) e. RR ) |
| 61 |
60
|
rexrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A + ( 1 / n ) ) e. RR* ) |
| 62 |
61
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( A + ( 1 / n ) ) e. RR* ) |
| 63 |
5
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> B e. RR* ) |
| 64 |
63
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> B e. RR* ) |
| 65 |
|
ressxr |
|- RR C_ RR* |
| 66 |
65
|
a1i |
|- ( ph -> RR C_ RR* ) |
| 67 |
16 66
|
fssd |
|- ( ph -> F : X --> RR* ) |
| 68 |
67
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> F : X --> RR* ) |
| 69 |
68
|
ffvelcdmda |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( F ` k ) e. RR* ) |
| 70 |
60
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( A + ( 1 / n ) ) e. RR ) |
| 71 |
17
|
ad4ant14 |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( F ` k ) e. RR ) |
| 72 |
59
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( 1 / n ) e. RR ) |
| 73 |
35 38
|
sseldd |
|- ( ph -> C e. RR ) |
| 74 |
73
|
ad3antrrr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> C e. RR ) |
| 75 |
18
|
ad4ant14 |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( ( F ` k ) - A ) e. RR ) |
| 76 |
|
simplr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( 1 / n ) < C ) |
| 77 |
35
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR ) |
| 78 |
33
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin ) |
| 79 |
|
id |
|- ( k e. X -> k e. X ) |
| 80 |
|
ovexd |
|- ( k e. X -> ( ( F ` k ) - A ) e. _V ) |
| 81 |
8
|
elrnmpt1 |
|- ( ( k e. X /\ ( ( F ` k ) - A ) e. _V ) -> ( ( F ` k ) - A ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) |
| 82 |
79 80 81
|
syl2anc |
|- ( k e. X -> ( ( F ` k ) - A ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) |
| 83 |
82
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( F ` k ) - A ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) |
| 84 |
|
infrefilb |
|- ( ( ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR /\ ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin /\ ( ( F ` k ) - A ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) -> inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) <_ ( ( F ` k ) - A ) ) |
| 85 |
77 78 83 84
|
syl3anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) <_ ( ( F ` k ) - A ) ) |
| 86 |
7 85
|
eqbrtrid |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> C <_ ( ( F ` k ) - A ) ) |
| 87 |
86
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> C <_ ( ( F ` k ) - A ) ) |
| 88 |
72 74 75 76 87
|
ltletrd |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( 1 / n ) < ( ( F ` k ) - A ) ) |
| 89 |
57
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> A e. RR ) |
| 90 |
89 72 71
|
ltaddsub2d |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( ( A + ( 1 / n ) ) < ( F ` k ) <-> ( 1 / n ) < ( ( F ` k ) - A ) ) ) |
| 91 |
88 90
|
mpbird |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( A + ( 1 / n ) ) < ( F ` k ) ) |
| 92 |
70 71 91
|
ltled |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( A + ( 1 / n ) ) <_ ( F ` k ) ) |
| 93 |
|
iooltub |
|- ( ( A e. RR* /\ B e. RR* /\ ( F ` k ) e. ( A (,) B ) ) -> ( F ` k ) < B ) |
| 94 |
19 5 23 93
|
syl3anc |
|- ( ( ph /\ k e. X ) -> ( F ` k ) < B ) |
| 95 |
94
|
ad4ant14 |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( F ` k ) < B ) |
| 96 |
62 64 69 92 95
|
elicod |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) |
| 97 |
96
|
ex |
|- ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> ( k e. X -> ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) ) |
| 98 |
56 97
|
ralrimi |
|- ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> A. k e. X ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) |
| 99 |
43 45 98
|
3jca |
|- ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> ( F e. _V /\ F Fn X /\ A. k e. X ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) ) |
| 100 |
|
elixp2 |
|- ( F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) <-> ( F e. _V /\ F Fn X /\ A. k e. X ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) ) |
| 101 |
99 100
|
sylibr |
|- ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) |
| 102 |
101
|
ex |
|- ( ( ph /\ n e. NN ) -> ( ( 1 / n ) < C -> F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) ) |
| 103 |
102
|
reximdva |
|- ( ph -> ( E. n e. NN ( 1 / n ) < C -> E. n e. NN F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) ) |
| 104 |
41 103
|
mpd |
|- ( ph -> E. n e. NN F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) |
| 105 |
|
eliun |
|- ( F e. U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) <-> E. n e. NN F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) |
| 106 |
104 105
|
sylibr |
|- ( ph -> F e. U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) |