Step |
Hyp |
Ref |
Expression |
1 |
|
iunhoiioolem.K |
|- F/ k ph |
2 |
|
iunhoiioolem.x |
|- ( ph -> X e. Fin ) |
3 |
|
iunhoiioolem.n |
|- ( ph -> X =/= (/) ) |
4 |
|
iunhoiioolem.a |
|- ( ( ph /\ k e. X ) -> A e. RR ) |
5 |
|
iunhoiioolem.b |
|- ( ( ph /\ k e. X ) -> B e. RR* ) |
6 |
|
iunhoiioolem.f |
|- ( ph -> F e. X_ k e. X ( A (,) B ) ) |
7 |
|
iunhoiioolem.c |
|- C = inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) |
8 |
|
eqid |
|- ( k e. X |-> ( ( F ` k ) - A ) ) = ( k e. X |-> ( ( F ` k ) - A ) ) |
9 |
|
ixpf |
|- ( F e. X_ k e. X ( A (,) B ) -> F : X --> U_ k e. X ( A (,) B ) ) |
10 |
6 9
|
syl |
|- ( ph -> F : X --> U_ k e. X ( A (,) B ) ) |
11 |
|
ioossre |
|- ( A (,) B ) C_ RR |
12 |
11
|
rgenw |
|- A. k e. X ( A (,) B ) C_ RR |
13 |
12
|
a1i |
|- ( ph -> A. k e. X ( A (,) B ) C_ RR ) |
14 |
|
iunss |
|- ( U_ k e. X ( A (,) B ) C_ RR <-> A. k e. X ( A (,) B ) C_ RR ) |
15 |
13 14
|
sylibr |
|- ( ph -> U_ k e. X ( A (,) B ) C_ RR ) |
16 |
10 15
|
fssd |
|- ( ph -> F : X --> RR ) |
17 |
16
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( F ` k ) e. RR ) |
18 |
17 4
|
resubcld |
|- ( ( ph /\ k e. X ) -> ( ( F ` k ) - A ) e. RR ) |
19 |
4
|
rexrd |
|- ( ( ph /\ k e. X ) -> A e. RR* ) |
20 |
6
|
adantr |
|- ( ( ph /\ k e. X ) -> F e. X_ k e. X ( A (,) B ) ) |
21 |
|
simpr |
|- ( ( ph /\ k e. X ) -> k e. X ) |
22 |
|
fvixp2 |
|- ( ( F e. X_ k e. X ( A (,) B ) /\ k e. X ) -> ( F ` k ) e. ( A (,) B ) ) |
23 |
20 21 22
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( F ` k ) e. ( A (,) B ) ) |
24 |
|
ioogtlb |
|- ( ( A e. RR* /\ B e. RR* /\ ( F ` k ) e. ( A (,) B ) ) -> A < ( F ` k ) ) |
25 |
19 5 23 24
|
syl3anc |
|- ( ( ph /\ k e. X ) -> A < ( F ` k ) ) |
26 |
4 17
|
posdifd |
|- ( ( ph /\ k e. X ) -> ( A < ( F ` k ) <-> 0 < ( ( F ` k ) - A ) ) ) |
27 |
25 26
|
mpbid |
|- ( ( ph /\ k e. X ) -> 0 < ( ( F ` k ) - A ) ) |
28 |
18 27
|
elrpd |
|- ( ( ph /\ k e. X ) -> ( ( F ` k ) - A ) e. RR+ ) |
29 |
1 8 28
|
rnmptssd |
|- ( ph -> ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR+ ) |
30 |
|
ltso |
|- < Or RR |
31 |
30
|
a1i |
|- ( ph -> < Or RR ) |
32 |
8
|
rnmptfi |
|- ( X e. Fin -> ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin ) |
33 |
2 32
|
syl |
|- ( ph -> ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin ) |
34 |
1 18 8 3
|
rnmptn0 |
|- ( ph -> ran ( k e. X |-> ( ( F ` k ) - A ) ) =/= (/) ) |
35 |
1 8 18
|
rnmptssd |
|- ( ph -> ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR ) |
36 |
|
fiinfcl |
|- ( ( < Or RR /\ ( ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin /\ ran ( k e. X |-> ( ( F ` k ) - A ) ) =/= (/) /\ ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR ) ) -> inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) |
37 |
31 33 34 35 36
|
syl13anc |
|- ( ph -> inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) |
38 |
7 37
|
eqeltrid |
|- ( ph -> C e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) |
39 |
29 38
|
sseldd |
|- ( ph -> C e. RR+ ) |
40 |
|
rpgtrecnn |
|- ( C e. RR+ -> E. n e. NN ( 1 / n ) < C ) |
41 |
39 40
|
syl |
|- ( ph -> E. n e. NN ( 1 / n ) < C ) |
42 |
6
|
elexd |
|- ( ph -> F e. _V ) |
43 |
42
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> F e. _V ) |
44 |
10
|
ffnd |
|- ( ph -> F Fn X ) |
45 |
44
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> F Fn X ) |
46 |
|
nfv |
|- F/ k n e. NN |
47 |
1 46
|
nfan |
|- F/ k ( ph /\ n e. NN ) |
48 |
|
nfcv |
|- F/_ k ( 1 / n ) |
49 |
|
nfcv |
|- F/_ k < |
50 |
|
nfmpt1 |
|- F/_ k ( k e. X |-> ( ( F ` k ) - A ) ) |
51 |
50
|
nfrn |
|- F/_ k ran ( k e. X |-> ( ( F ` k ) - A ) ) |
52 |
|
nfcv |
|- F/_ k RR |
53 |
51 52 49
|
nfinf |
|- F/_ k inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) |
54 |
7 53
|
nfcxfr |
|- F/_ k C |
55 |
48 49 54
|
nfbr |
|- F/ k ( 1 / n ) < C |
56 |
47 55
|
nfan |
|- F/ k ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) |
57 |
4
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> A e. RR ) |
58 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
59 |
58
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR ) |
60 |
57 59
|
readdcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A + ( 1 / n ) ) e. RR ) |
61 |
60
|
rexrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A + ( 1 / n ) ) e. RR* ) |
62 |
61
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( A + ( 1 / n ) ) e. RR* ) |
63 |
5
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> B e. RR* ) |
64 |
63
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> B e. RR* ) |
65 |
|
ressxr |
|- RR C_ RR* |
66 |
65
|
a1i |
|- ( ph -> RR C_ RR* ) |
67 |
16 66
|
fssd |
|- ( ph -> F : X --> RR* ) |
68 |
67
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> F : X --> RR* ) |
69 |
68
|
ffvelrnda |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( F ` k ) e. RR* ) |
70 |
60
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( A + ( 1 / n ) ) e. RR ) |
71 |
17
|
ad4ant14 |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( F ` k ) e. RR ) |
72 |
59
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( 1 / n ) e. RR ) |
73 |
35 38
|
sseldd |
|- ( ph -> C e. RR ) |
74 |
73
|
ad3antrrr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> C e. RR ) |
75 |
18
|
ad4ant14 |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( ( F ` k ) - A ) e. RR ) |
76 |
|
simplr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( 1 / n ) < C ) |
77 |
35
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR ) |
78 |
33
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin ) |
79 |
|
id |
|- ( k e. X -> k e. X ) |
80 |
|
ovexd |
|- ( k e. X -> ( ( F ` k ) - A ) e. _V ) |
81 |
8
|
elrnmpt1 |
|- ( ( k e. X /\ ( ( F ` k ) - A ) e. _V ) -> ( ( F ` k ) - A ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) |
82 |
79 80 81
|
syl2anc |
|- ( k e. X -> ( ( F ` k ) - A ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) |
83 |
82
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( F ` k ) - A ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) |
84 |
|
infrefilb |
|- ( ( ran ( k e. X |-> ( ( F ` k ) - A ) ) C_ RR /\ ran ( k e. X |-> ( ( F ` k ) - A ) ) e. Fin /\ ( ( F ` k ) - A ) e. ran ( k e. X |-> ( ( F ` k ) - A ) ) ) -> inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) <_ ( ( F ` k ) - A ) ) |
85 |
77 78 83 84
|
syl3anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> inf ( ran ( k e. X |-> ( ( F ` k ) - A ) ) , RR , < ) <_ ( ( F ` k ) - A ) ) |
86 |
7 85
|
eqbrtrid |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> C <_ ( ( F ` k ) - A ) ) |
87 |
86
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> C <_ ( ( F ` k ) - A ) ) |
88 |
72 74 75 76 87
|
ltletrd |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( 1 / n ) < ( ( F ` k ) - A ) ) |
89 |
57
|
adantlr |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> A e. RR ) |
90 |
89 72 71
|
ltaddsub2d |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( ( A + ( 1 / n ) ) < ( F ` k ) <-> ( 1 / n ) < ( ( F ` k ) - A ) ) ) |
91 |
88 90
|
mpbird |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( A + ( 1 / n ) ) < ( F ` k ) ) |
92 |
70 71 91
|
ltled |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( A + ( 1 / n ) ) <_ ( F ` k ) ) |
93 |
|
iooltub |
|- ( ( A e. RR* /\ B e. RR* /\ ( F ` k ) e. ( A (,) B ) ) -> ( F ` k ) < B ) |
94 |
19 5 23 93
|
syl3anc |
|- ( ( ph /\ k e. X ) -> ( F ` k ) < B ) |
95 |
94
|
ad4ant14 |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( F ` k ) < B ) |
96 |
62 64 69 92 95
|
elicod |
|- ( ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) /\ k e. X ) -> ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) |
97 |
96
|
ex |
|- ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> ( k e. X -> ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) ) |
98 |
56 97
|
ralrimi |
|- ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> A. k e. X ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) |
99 |
43 45 98
|
3jca |
|- ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> ( F e. _V /\ F Fn X /\ A. k e. X ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) ) |
100 |
|
elixp2 |
|- ( F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) <-> ( F e. _V /\ F Fn X /\ A. k e. X ( F ` k ) e. ( ( A + ( 1 / n ) ) [,) B ) ) ) |
101 |
99 100
|
sylibr |
|- ( ( ( ph /\ n e. NN ) /\ ( 1 / n ) < C ) -> F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) |
102 |
101
|
ex |
|- ( ( ph /\ n e. NN ) -> ( ( 1 / n ) < C -> F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) ) |
103 |
102
|
reximdva |
|- ( ph -> ( E. n e. NN ( 1 / n ) < C -> E. n e. NN F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) ) |
104 |
41 103
|
mpd |
|- ( ph -> E. n e. NN F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) |
105 |
|
eliun |
|- ( F e. U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) <-> E. n e. NN F e. X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) |
106 |
104 105
|
sylibr |
|- ( ph -> F e. U_ n e. NN X_ k e. X ( ( A + ( 1 / n ) ) [,) B ) ) |