Metamath Proof Explorer


Theorem iunhoiioolem

Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iunhoiioolem.K 𝑘 𝜑
iunhoiioolem.x ( 𝜑𝑋 ∈ Fin )
iunhoiioolem.n ( 𝜑𝑋 ≠ ∅ )
iunhoiioolem.a ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ )
iunhoiioolem.b ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ* )
iunhoiioolem.f ( 𝜑𝐹X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
iunhoiioolem.c 𝐶 = inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) , ℝ , < )
Assertion iunhoiioolem ( 𝜑𝐹 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 iunhoiioolem.K 𝑘 𝜑
2 iunhoiioolem.x ( 𝜑𝑋 ∈ Fin )
3 iunhoiioolem.n ( 𝜑𝑋 ≠ ∅ )
4 iunhoiioolem.a ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ )
5 iunhoiioolem.b ( ( 𝜑𝑘𝑋 ) → 𝐵 ∈ ℝ* )
6 iunhoiioolem.f ( 𝜑𝐹X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
7 iunhoiioolem.c 𝐶 = inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) , ℝ , < )
8 eqid ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) = ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) )
9 ixpf ( 𝐹X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) → 𝐹 : 𝑋 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
10 6 9 syl ( 𝜑𝐹 : 𝑋 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
11 ioossre ( 𝐴 (,) 𝐵 ) ⊆ ℝ
12 11 rgenw 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ
13 12 a1i ( 𝜑 → ∀ 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ )
14 iunss ( 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ ↔ ∀ 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ )
15 13 14 sylibr ( 𝜑 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ )
16 10 15 fssd ( 𝜑𝐹 : 𝑋 ⟶ ℝ )
17 16 ffvelrnda ( ( 𝜑𝑘𝑋 ) → ( 𝐹𝑘 ) ∈ ℝ )
18 17 4 resubcld ( ( 𝜑𝑘𝑋 ) → ( ( 𝐹𝑘 ) − 𝐴 ) ∈ ℝ )
19 4 rexrd ( ( 𝜑𝑘𝑋 ) → 𝐴 ∈ ℝ* )
20 6 adantr ( ( 𝜑𝑘𝑋 ) → 𝐹X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) )
21 simpr ( ( 𝜑𝑘𝑋 ) → 𝑘𝑋 )
22 fvixp2 ( ( 𝐹X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ∧ 𝑘𝑋 ) → ( 𝐹𝑘 ) ∈ ( 𝐴 (,) 𝐵 ) )
23 20 21 22 syl2anc ( ( 𝜑𝑘𝑋 ) → ( 𝐹𝑘 ) ∈ ( 𝐴 (,) 𝐵 ) )
24 ioogtlb ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ ( 𝐹𝑘 ) ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < ( 𝐹𝑘 ) )
25 19 5 23 24 syl3anc ( ( 𝜑𝑘𝑋 ) → 𝐴 < ( 𝐹𝑘 ) )
26 4 17 posdifd ( ( 𝜑𝑘𝑋 ) → ( 𝐴 < ( 𝐹𝑘 ) ↔ 0 < ( ( 𝐹𝑘 ) − 𝐴 ) ) )
27 25 26 mpbid ( ( 𝜑𝑘𝑋 ) → 0 < ( ( 𝐹𝑘 ) − 𝐴 ) )
28 18 27 elrpd ( ( 𝜑𝑘𝑋 ) → ( ( 𝐹𝑘 ) − 𝐴 ) ∈ ℝ+ )
29 1 8 28 rnmptssd ( 𝜑 → ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) ⊆ ℝ+ )
30 ltso < Or ℝ
31 30 a1i ( 𝜑 → < Or ℝ )
32 8 rnmptfi ( 𝑋 ∈ Fin → ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) ∈ Fin )
33 2 32 syl ( 𝜑 → ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) ∈ Fin )
34 1 28 8 3 rnmptn0 ( 𝜑 → ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) ≠ ∅ )
35 1 8 18 rnmptssd ( 𝜑 → ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) ⊆ ℝ )
36 fiinfcl ( ( < Or ℝ ∧ ( ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) ∈ Fin ∧ ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) ≠ ∅ ∧ ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) ⊆ ℝ ) ) → inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) , ℝ , < ) ∈ ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) )
37 31 33 34 35 36 syl13anc ( 𝜑 → inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) , ℝ , < ) ∈ ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) )
38 7 37 eqeltrid ( 𝜑𝐶 ∈ ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) )
39 29 38 sseldd ( 𝜑𝐶 ∈ ℝ+ )
40 rpgtrecnn ( 𝐶 ∈ ℝ+ → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐶 )
41 39 40 syl ( 𝜑 → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐶 )
42 6 elexd ( 𝜑𝐹 ∈ V )
43 42 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → 𝐹 ∈ V )
44 10 ffnd ( 𝜑𝐹 Fn 𝑋 )
45 44 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → 𝐹 Fn 𝑋 )
46 nfv 𝑘 𝑛 ∈ ℕ
47 1 46 nfan 𝑘 ( 𝜑𝑛 ∈ ℕ )
48 nfcv 𝑘 ( 1 / 𝑛 )
49 nfcv 𝑘 <
50 nfmpt1 𝑘 ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) )
51 50 nfrn 𝑘 ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) )
52 nfcv 𝑘
53 51 52 49 nfinf 𝑘 inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) , ℝ , < )
54 7 53 nfcxfr 𝑘 𝐶
55 48 49 54 nfbr 𝑘 ( 1 / 𝑛 ) < 𝐶
56 47 55 nfan 𝑘 ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 )
57 4 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝐴 ∈ ℝ )
58 nnrecre ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ )
59 58 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ )
60 57 59 readdcld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ∈ ℝ )
61 60 rexrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ∈ ℝ* )
62 61 adantlr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ∈ ℝ* )
63 5 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝐵 ∈ ℝ* )
64 63 adantlr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → 𝐵 ∈ ℝ* )
65 ressxr ℝ ⊆ ℝ*
66 65 a1i ( 𝜑 → ℝ ⊆ ℝ* )
67 16 66 fssd ( 𝜑𝐹 : 𝑋 ⟶ ℝ* )
68 67 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → 𝐹 : 𝑋 ⟶ ℝ* )
69 68 ffvelrnda ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → ( 𝐹𝑘 ) ∈ ℝ* )
70 60 adantlr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ∈ ℝ )
71 17 ad4ant14 ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → ( 𝐹𝑘 ) ∈ ℝ )
72 59 adantlr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ )
73 35 38 sseldd ( 𝜑𝐶 ∈ ℝ )
74 73 ad3antrrr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → 𝐶 ∈ ℝ )
75 18 ad4ant14 ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → ( ( 𝐹𝑘 ) − 𝐴 ) ∈ ℝ )
76 simplr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → ( 1 / 𝑛 ) < 𝐶 )
77 35 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) ⊆ ℝ )
78 33 ad2antrr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) ∈ Fin )
79 id ( 𝑘𝑋𝑘𝑋 )
80 ovexd ( 𝑘𝑋 → ( ( 𝐹𝑘 ) − 𝐴 ) ∈ V )
81 8 elrnmpt1 ( ( 𝑘𝑋 ∧ ( ( 𝐹𝑘 ) − 𝐴 ) ∈ V ) → ( ( 𝐹𝑘 ) − 𝐴 ) ∈ ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) )
82 79 80 81 syl2anc ( 𝑘𝑋 → ( ( 𝐹𝑘 ) − 𝐴 ) ∈ ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) )
83 82 adantl ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐹𝑘 ) − 𝐴 ) ∈ ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) )
84 infrefilb ( ( ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) ⊆ ℝ ∧ ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) ∈ Fin ∧ ( ( 𝐹𝑘 ) − 𝐴 ) ∈ ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) ) → inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) , ℝ , < ) ≤ ( ( 𝐹𝑘 ) − 𝐴 ) )
85 77 78 83 84 syl3anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → inf ( ran ( 𝑘𝑋 ↦ ( ( 𝐹𝑘 ) − 𝐴 ) ) , ℝ , < ) ≤ ( ( 𝐹𝑘 ) − 𝐴 ) )
86 7 85 eqbrtrid ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → 𝐶 ≤ ( ( 𝐹𝑘 ) − 𝐴 ) )
87 86 adantlr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → 𝐶 ≤ ( ( 𝐹𝑘 ) − 𝐴 ) )
88 72 74 75 76 87 ltletrd ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → ( 1 / 𝑛 ) < ( ( 𝐹𝑘 ) − 𝐴 ) )
89 57 adantlr ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → 𝐴 ∈ ℝ )
90 89 72 71 ltaddsub2d ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → ( ( 𝐴 + ( 1 / 𝑛 ) ) < ( 𝐹𝑘 ) ↔ ( 1 / 𝑛 ) < ( ( 𝐹𝑘 ) − 𝐴 ) ) )
91 88 90 mpbird ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) < ( 𝐹𝑘 ) )
92 70 71 91 ltled ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ≤ ( 𝐹𝑘 ) )
93 iooltub ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ ( 𝐹𝑘 ) ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹𝑘 ) < 𝐵 )
94 19 5 23 93 syl3anc ( ( 𝜑𝑘𝑋 ) → ( 𝐹𝑘 ) < 𝐵 )
95 94 ad4ant14 ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → ( 𝐹𝑘 ) < 𝐵 )
96 62 64 69 92 95 elicod ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘𝑋 ) → ( 𝐹𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) )
97 96 ex ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → ( 𝑘𝑋 → ( 𝐹𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) )
98 56 97 ralrimi ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → ∀ 𝑘𝑋 ( 𝐹𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) )
99 43 45 98 3jca ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → ( 𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀ 𝑘𝑋 ( 𝐹𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) )
100 elixp2 ( 𝐹X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀ 𝑘𝑋 ( 𝐹𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) )
101 99 100 sylibr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → 𝐹X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) )
102 101 ex ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 1 / 𝑛 ) < 𝐶𝐹X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) )
103 102 reximdva ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐶 → ∃ 𝑛 ∈ ℕ 𝐹X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) )
104 41 103 mpd ( 𝜑 → ∃ 𝑛 ∈ ℕ 𝐹X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) )
105 eliun ( 𝐹 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ↔ ∃ 𝑛 ∈ ℕ 𝐹X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) )
106 104 105 sylibr ( 𝜑𝐹 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) )