| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iunhoiioolem.K | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | iunhoiioolem.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 3 |  | iunhoiioolem.n | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 4 |  | iunhoiioolem.a | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | iunhoiioolem.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ* ) | 
						
							| 6 |  | iunhoiioolem.f | ⊢ ( 𝜑  →  𝐹  ∈  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 7 |  | iunhoiioolem.c | ⊢ 𝐶  =  inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ,  ℝ ,   <  ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  =  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) | 
						
							| 9 |  | ixpf | ⊢ ( 𝐹  ∈  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 )  →  𝐹 : 𝑋 ⟶ ∪  𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 10 | 6 9 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ∪  𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 11 |  | ioossre | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ℝ | 
						
							| 12 | 11 | rgenw | ⊢ ∀ 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 )  ⊆  ℝ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 )  ⊆  ℝ ) | 
						
							| 14 |  | iunss | ⊢ ( ∪  𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 )  ⊆  ℝ  ↔  ∀ 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 )  ⊆  ℝ ) | 
						
							| 15 | 13 14 | sylibr | ⊢ ( 𝜑  →  ∪  𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 )  ⊆  ℝ ) | 
						
							| 16 | 10 15 | fssd | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ℝ ) | 
						
							| 17 | 16 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 18 | 17 4 | resubcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 )  ∈  ℝ ) | 
						
							| 19 | 4 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ* ) | 
						
							| 20 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐹  ∈  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝑘  ∈  𝑋 ) | 
						
							| 22 |  | fvixp2 | ⊢ ( ( 𝐹  ∈  X 𝑘  ∈  𝑋 ( 𝐴 (,) 𝐵 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 23 | 20 21 22 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 24 |  | ioogtlb | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐴  <  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 25 | 19 5 23 24 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝐴  <  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 26 | 4 17 | posdifd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴  <  ( 𝐹 ‘ 𝑘 )  ↔  0  <  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 27 | 25 26 | mpbid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  0  <  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) | 
						
							| 28 | 18 27 | elrpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 )  ∈  ℝ+ ) | 
						
							| 29 | 1 8 28 | rnmptssd | ⊢ ( 𝜑  →  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  ⊆  ℝ+ ) | 
						
							| 30 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →   <   Or  ℝ ) | 
						
							| 32 | 8 | rnmptfi | ⊢ ( 𝑋  ∈  Fin  →  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  ∈  Fin ) | 
						
							| 33 | 2 32 | syl | ⊢ ( 𝜑  →  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  ∈  Fin ) | 
						
							| 34 | 1 18 8 3 | rnmptn0 | ⊢ ( 𝜑  →  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  ≠  ∅ ) | 
						
							| 35 | 1 8 18 | rnmptssd | ⊢ ( 𝜑  →  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  ⊆  ℝ ) | 
						
							| 36 |  | fiinfcl | ⊢ ( (  <   Or  ℝ  ∧  ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  ∈  Fin  ∧  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  ≠  ∅  ∧  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  ⊆  ℝ ) )  →  inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ,  ℝ ,   <  )  ∈  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 37 | 31 33 34 35 36 | syl13anc | ⊢ ( 𝜑  →  inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ,  ℝ ,   <  )  ∈  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 38 | 7 37 | eqeltrid | ⊢ ( 𝜑  →  𝐶  ∈  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 39 | 29 38 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 40 |  | rpgtrecnn | ⊢ ( 𝐶  ∈  ℝ+  →  ∃ 𝑛  ∈  ℕ ( 1  /  𝑛 )  <  𝐶 ) | 
						
							| 41 | 39 40 | syl | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ( 1  /  𝑛 )  <  𝐶 ) | 
						
							| 42 | 6 | elexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  →  𝐹  ∈  V ) | 
						
							| 44 | 10 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝑋 ) | 
						
							| 45 | 44 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  →  𝐹  Fn  𝑋 ) | 
						
							| 46 |  | nfv | ⊢ Ⅎ 𝑘 𝑛  ∈  ℕ | 
						
							| 47 | 1 46 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑛  ∈  ℕ ) | 
						
							| 48 |  | nfcv | ⊢ Ⅎ 𝑘 ( 1  /  𝑛 ) | 
						
							| 49 |  | nfcv | ⊢ Ⅎ 𝑘  < | 
						
							| 50 |  | nfmpt1 | ⊢ Ⅎ 𝑘 ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) | 
						
							| 51 | 50 | nfrn | ⊢ Ⅎ 𝑘 ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) | 
						
							| 52 |  | nfcv | ⊢ Ⅎ 𝑘 ℝ | 
						
							| 53 | 51 52 49 | nfinf | ⊢ Ⅎ 𝑘 inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ,  ℝ ,   <  ) | 
						
							| 54 | 7 53 | nfcxfr | ⊢ Ⅎ 𝑘 𝐶 | 
						
							| 55 | 48 49 54 | nfbr | ⊢ Ⅎ 𝑘 ( 1  /  𝑛 )  <  𝐶 | 
						
							| 56 | 47 55 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 ) | 
						
							| 57 | 4 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 58 |  | nnrecre | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 59 | 58 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 60 | 57 59 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 61 | 60 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴  +  ( 1  /  𝑛 ) )  ∈  ℝ* ) | 
						
							| 62 | 61 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴  +  ( 1  /  𝑛 ) )  ∈  ℝ* ) | 
						
							| 63 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ* ) | 
						
							| 64 | 63 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  𝐵  ∈  ℝ* ) | 
						
							| 65 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 66 | 65 | a1i | ⊢ ( 𝜑  →  ℝ  ⊆  ℝ* ) | 
						
							| 67 | 16 66 | fssd | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ℝ* ) | 
						
							| 68 | 67 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  →  𝐹 : 𝑋 ⟶ ℝ* ) | 
						
							| 69 | 68 | ffvelcdmda | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 70 | 60 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 71 | 17 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 72 | 59 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 73 | 35 38 | sseldd | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 74 | 73 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  𝐶  ∈  ℝ ) | 
						
							| 75 | 18 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 )  ∈  ℝ ) | 
						
							| 76 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  𝑛 )  <  𝐶 ) | 
						
							| 77 | 35 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  ⊆  ℝ ) | 
						
							| 78 | 33 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  ∈  Fin ) | 
						
							| 79 |  | id | ⊢ ( 𝑘  ∈  𝑋  →  𝑘  ∈  𝑋 ) | 
						
							| 80 |  | ovexd | ⊢ ( 𝑘  ∈  𝑋  →  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 )  ∈  V ) | 
						
							| 81 | 8 | elrnmpt1 | ⊢ ( ( 𝑘  ∈  𝑋  ∧  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 )  ∈  V )  →  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 )  ∈  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 82 | 79 80 81 | syl2anc | ⊢ ( 𝑘  ∈  𝑋  →  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 )  ∈  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 83 | 82 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 )  ∈  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 84 |  | infrefilb | ⊢ ( ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  ⊆  ℝ  ∧  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) )  ∈  Fin  ∧  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 )  ∈  ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) )  →  inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ,  ℝ ,   <  )  ≤  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) | 
						
							| 85 | 77 78 83 84 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  inf ( ran  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ,  ℝ ,   <  )  ≤  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) | 
						
							| 86 | 7 85 | eqbrtrid | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  𝐶  ≤  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) | 
						
							| 87 | 86 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  𝐶  ≤  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) | 
						
							| 88 | 72 74 75 76 87 | ltletrd | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  𝑛 )  <  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) | 
						
							| 89 | 57 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  𝐴  ∈  ℝ ) | 
						
							| 90 | 89 72 71 | ltaddsub2d | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐴  +  ( 1  /  𝑛 ) )  <  ( 𝐹 ‘ 𝑘 )  ↔  ( 1  /  𝑛 )  <  ( ( 𝐹 ‘ 𝑘 )  −  𝐴 ) ) ) | 
						
							| 91 | 88 90 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴  +  ( 1  /  𝑛 ) )  <  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 92 | 70 71 91 | ltled | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴  +  ( 1  /  𝑛 ) )  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 93 |  | iooltub | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑘 )  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( 𝐹 ‘ 𝑘 )  <  𝐵 ) | 
						
							| 94 | 19 5 23 93 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  <  𝐵 ) | 
						
							| 95 | 94 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  <  𝐵 ) | 
						
							| 96 | 62 64 69 92 95 | elicod | ⊢ ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 ) ) | 
						
							| 97 | 96 | ex | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  →  ( 𝑘  ∈  𝑋  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 ) ) ) | 
						
							| 98 | 56 97 | ralrimi | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  →  ∀ 𝑘  ∈  𝑋 ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 ) ) | 
						
							| 99 | 43 45 98 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  →  ( 𝐹  ∈  V  ∧  𝐹  Fn  𝑋  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 ) ) ) | 
						
							| 100 |  | elixp2 | ⊢ ( 𝐹  ∈  X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  ↔  ( 𝐹  ∈  V  ∧  𝐹  Fn  𝑋  ∧  ∀ 𝑘  ∈  𝑋 ( 𝐹 ‘ 𝑘 )  ∈  ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 ) ) ) | 
						
							| 101 | 99 100 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 1  /  𝑛 )  <  𝐶 )  →  𝐹  ∈  X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 ) ) | 
						
							| 102 | 101 | ex | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 1  /  𝑛 )  <  𝐶  →  𝐹  ∈  X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 ) ) ) | 
						
							| 103 | 102 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℕ ( 1  /  𝑛 )  <  𝐶  →  ∃ 𝑛  ∈  ℕ 𝐹  ∈  X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 ) ) ) | 
						
							| 104 | 41 103 | mpd | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ 𝐹  ∈  X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 ) ) | 
						
							| 105 |  | eliun | ⊢ ( 𝐹  ∈  ∪  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 )  ↔  ∃ 𝑛  ∈  ℕ 𝐹  ∈  X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 ) ) | 
						
							| 106 | 104 105 | sylibr | ⊢ ( 𝜑  →  𝐹  ∈  ∪  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴  +  ( 1  /  𝑛 ) ) [,) 𝐵 ) ) |