| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunhoiioolem.K |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
iunhoiioolem.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 3 |
|
iunhoiioolem.n |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 4 |
|
iunhoiioolem.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
| 5 |
|
iunhoiioolem.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ* ) |
| 6 |
|
iunhoiioolem.f |
⊢ ( 𝜑 → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 7 |
|
iunhoiioolem.c |
⊢ 𝐶 = inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) |
| 8 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
| 9 |
|
ixpf |
⊢ ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) → 𝐹 : 𝑋 ⟶ ∪ 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 10 |
6 9
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ∪ 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 11 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 12 |
11
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 14 |
|
iunss |
⊢ ( ∪ 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ ↔ ∀ 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 15 |
13 14
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 16 |
10 15
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 17 |
16
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 18 |
17 4
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ℝ ) |
| 19 |
4
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ* ) |
| 20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
| 22 |
|
fvixp2 |
⊢ ( ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 (,) 𝐵 ) ) |
| 23 |
20 21 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 (,) 𝐵 ) ) |
| 24 |
|
ioogtlb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < ( 𝐹 ‘ 𝑘 ) ) |
| 25 |
19 5 23 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 < ( 𝐹 ‘ 𝑘 ) ) |
| 26 |
4 17
|
posdifd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 < ( 𝐹 ‘ 𝑘 ) ↔ 0 < ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
| 27 |
25 26
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 0 < ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
| 28 |
18 27
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ℝ+ ) |
| 29 |
1 8 28
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ⊆ ℝ+ ) |
| 30 |
|
ltso |
⊢ < Or ℝ |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → < Or ℝ ) |
| 32 |
8
|
rnmptfi |
⊢ ( 𝑋 ∈ Fin → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ Fin ) |
| 33 |
2 32
|
syl |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ Fin ) |
| 34 |
1 18 8 3
|
rnmptn0 |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ≠ ∅ ) |
| 35 |
1 8 18
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ⊆ ℝ ) |
| 36 |
|
fiinfcl |
⊢ ( ( < Or ℝ ∧ ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ Fin ∧ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ≠ ∅ ∧ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ⊆ ℝ ) ) → inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
| 37 |
31 33 34 35 36
|
syl13anc |
⊢ ( 𝜑 → inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
| 38 |
7 37
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
| 39 |
29 38
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 40 |
|
rpgtrecnn |
⊢ ( 𝐶 ∈ ℝ+ → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐶 ) |
| 41 |
39 40
|
syl |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐶 ) |
| 42 |
6
|
elexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → 𝐹 ∈ V ) |
| 44 |
10
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 45 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → 𝐹 Fn 𝑋 ) |
| 46 |
|
nfv |
⊢ Ⅎ 𝑘 𝑛 ∈ ℕ |
| 47 |
1 46
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑛 ∈ ℕ ) |
| 48 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 1 / 𝑛 ) |
| 49 |
|
nfcv |
⊢ Ⅎ 𝑘 < |
| 50 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
| 51 |
50
|
nfrn |
⊢ Ⅎ 𝑘 ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
| 52 |
|
nfcv |
⊢ Ⅎ 𝑘 ℝ |
| 53 |
51 52 49
|
nfinf |
⊢ Ⅎ 𝑘 inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) |
| 54 |
7 53
|
nfcxfr |
⊢ Ⅎ 𝑘 𝐶 |
| 55 |
48 49 54
|
nfbr |
⊢ Ⅎ 𝑘 ( 1 / 𝑛 ) < 𝐶 |
| 56 |
47 55
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) |
| 57 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
| 58 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
| 59 |
58
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 60 |
57 59
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 61 |
60
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ∈ ℝ* ) |
| 62 |
61
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ∈ ℝ* ) |
| 63 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ* ) |
| 64 |
63
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ* ) |
| 65 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 66 |
65
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ* ) |
| 67 |
16 66
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ* ) |
| 68 |
67
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → 𝐹 : 𝑋 ⟶ ℝ* ) |
| 69 |
68
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
| 70 |
60
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 71 |
17
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 72 |
59
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 73 |
35 38
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 74 |
73
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → 𝐶 ∈ ℝ ) |
| 75 |
18
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ℝ ) |
| 76 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) < 𝐶 ) |
| 77 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ⊆ ℝ ) |
| 78 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ Fin ) |
| 79 |
|
id |
⊢ ( 𝑘 ∈ 𝑋 → 𝑘 ∈ 𝑋 ) |
| 80 |
|
ovexd |
⊢ ( 𝑘 ∈ 𝑋 → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ V ) |
| 81 |
8
|
elrnmpt1 |
⊢ ( ( 𝑘 ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ V ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
| 82 |
79 80 81
|
syl2anc |
⊢ ( 𝑘 ∈ 𝑋 → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
| 83 |
82
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
| 84 |
|
infrefilb |
⊢ ( ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ⊆ ℝ ∧ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ Fin ∧ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) → inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) ≤ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
| 85 |
77 78 83 84
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) ≤ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
| 86 |
7 85
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐶 ≤ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
| 87 |
86
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → 𝐶 ≤ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
| 88 |
72 74 75 76 87
|
ltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) < ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
| 89 |
57
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
| 90 |
89 72 71
|
ltaddsub2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 + ( 1 / 𝑛 ) ) < ( 𝐹 ‘ 𝑘 ) ↔ ( 1 / 𝑛 ) < ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
| 91 |
88 90
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) < ( 𝐹 ‘ 𝑘 ) ) |
| 92 |
70 71 91
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 93 |
|
iooltub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑘 ) < 𝐵 ) |
| 94 |
19 5 23 93
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) < 𝐵 ) |
| 95 |
94
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) < 𝐵 ) |
| 96 |
62 64 69 92 95
|
elicod |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |
| 97 |
96
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → ( 𝑘 ∈ 𝑋 → ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) ) |
| 98 |
56 97
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |
| 99 |
43 45 98
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → ( 𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) ) |
| 100 |
|
elixp2 |
⊢ ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) ) |
| 101 |
99 100
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |
| 102 |
101
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝑛 ) < 𝐶 → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) ) |
| 103 |
102
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐶 → ∃ 𝑛 ∈ ℕ 𝐹 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) ) |
| 104 |
41 103
|
mpd |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ 𝐹 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |
| 105 |
|
eliun |
⊢ ( 𝐹 ∈ ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ↔ ∃ 𝑛 ∈ ℕ 𝐹 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |
| 106 |
104 105
|
sylibr |
⊢ ( 𝜑 → 𝐹 ∈ ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |