Step |
Hyp |
Ref |
Expression |
1 |
|
iunhoiioolem.K |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
iunhoiioolem.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
iunhoiioolem.n |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
4 |
|
iunhoiioolem.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
5 |
|
iunhoiioolem.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ* ) |
6 |
|
iunhoiioolem.f |
⊢ ( 𝜑 → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
7 |
|
iunhoiioolem.c |
⊢ 𝐶 = inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) |
8 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
9 |
|
ixpf |
⊢ ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) → 𝐹 : 𝑋 ⟶ ∪ 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ∪ 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
11 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
12 |
11
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
13 |
12
|
a1i |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
14 |
|
iunss |
⊢ ( ∪ 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ ↔ ∀ 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
15 |
13 14
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
16 |
10 15
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
17 |
16
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
18 |
17 4
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ℝ ) |
19 |
4
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ* ) |
20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ) |
21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
22 |
|
fvixp2 |
⊢ ( ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ( 𝐴 (,) 𝐵 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 (,) 𝐵 ) ) |
23 |
20 21 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 (,) 𝐵 ) ) |
24 |
|
ioogtlb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < ( 𝐹 ‘ 𝑘 ) ) |
25 |
19 5 23 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐴 < ( 𝐹 ‘ 𝑘 ) ) |
26 |
4 17
|
posdifd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 < ( 𝐹 ‘ 𝑘 ) ↔ 0 < ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
27 |
25 26
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 0 < ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
28 |
18 27
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ℝ+ ) |
29 |
1 8 28
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ⊆ ℝ+ ) |
30 |
|
ltso |
⊢ < Or ℝ |
31 |
30
|
a1i |
⊢ ( 𝜑 → < Or ℝ ) |
32 |
8
|
rnmptfi |
⊢ ( 𝑋 ∈ Fin → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ Fin ) |
33 |
2 32
|
syl |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ Fin ) |
34 |
1 18 8 3
|
rnmptn0 |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ≠ ∅ ) |
35 |
1 8 18
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ⊆ ℝ ) |
36 |
|
fiinfcl |
⊢ ( ( < Or ℝ ∧ ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ Fin ∧ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ≠ ∅ ∧ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ⊆ ℝ ) ) → inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
37 |
31 33 34 35 36
|
syl13anc |
⊢ ( 𝜑 → inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
38 |
7 37
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
39 |
29 38
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
40 |
|
rpgtrecnn |
⊢ ( 𝐶 ∈ ℝ+ → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐶 ) |
41 |
39 40
|
syl |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐶 ) |
42 |
6
|
elexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → 𝐹 ∈ V ) |
44 |
10
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → 𝐹 Fn 𝑋 ) |
46 |
|
nfv |
⊢ Ⅎ 𝑘 𝑛 ∈ ℕ |
47 |
1 46
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑛 ∈ ℕ ) |
48 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 1 / 𝑛 ) |
49 |
|
nfcv |
⊢ Ⅎ 𝑘 < |
50 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
51 |
50
|
nfrn |
⊢ Ⅎ 𝑘 ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
52 |
|
nfcv |
⊢ Ⅎ 𝑘 ℝ |
53 |
51 52 49
|
nfinf |
⊢ Ⅎ 𝑘 inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) |
54 |
7 53
|
nfcxfr |
⊢ Ⅎ 𝑘 𝐶 |
55 |
48 49 54
|
nfbr |
⊢ Ⅎ 𝑘 ( 1 / 𝑛 ) < 𝐶 |
56 |
47 55
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) |
57 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
58 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
59 |
58
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
60 |
57 59
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ∈ ℝ ) |
61 |
60
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ∈ ℝ* ) |
62 |
61
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ∈ ℝ* ) |
63 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ* ) |
64 |
63
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → 𝐵 ∈ ℝ* ) |
65 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
66 |
65
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ* ) |
67 |
16 66
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ* ) |
68 |
67
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → 𝐹 : 𝑋 ⟶ ℝ* ) |
69 |
68
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
70 |
60
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ∈ ℝ ) |
71 |
17
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
72 |
59
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
73 |
35 38
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
74 |
73
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → 𝐶 ∈ ℝ ) |
75 |
18
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ℝ ) |
76 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) < 𝐶 ) |
77 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ⊆ ℝ ) |
78 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ Fin ) |
79 |
|
id |
⊢ ( 𝑘 ∈ 𝑋 → 𝑘 ∈ 𝑋 ) |
80 |
|
ovexd |
⊢ ( 𝑘 ∈ 𝑋 → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ V ) |
81 |
8
|
elrnmpt1 |
⊢ ( ( 𝑘 ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ V ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
82 |
79 80 81
|
syl2anc |
⊢ ( 𝑘 ∈ 𝑋 → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
83 |
82
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
84 |
|
infrefilb |
⊢ ( ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ⊆ ℝ ∧ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ∈ Fin ∧ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) → inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) ≤ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
85 |
77 78 83 84
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) , ℝ , < ) ≤ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
86 |
7 85
|
eqbrtrid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → 𝐶 ≤ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
87 |
86
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → 𝐶 ≤ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
88 |
72 74 75 76 87
|
ltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) < ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
89 |
57
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ ℝ ) |
90 |
89 72 71
|
ltaddsub2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 + ( 1 / 𝑛 ) ) < ( 𝐹 ‘ 𝑘 ) ↔ ( 1 / 𝑛 ) < ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
91 |
88 90
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) < ( 𝐹 ‘ 𝑘 ) ) |
92 |
70 71 91
|
ltled |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 + ( 1 / 𝑛 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
93 |
|
iooltub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑘 ) < 𝐵 ) |
94 |
19 5 23 93
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) < 𝐵 ) |
95 |
94
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) < 𝐵 ) |
96 |
62 64 69 92 95
|
elicod |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |
97 |
96
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → ( 𝑘 ∈ 𝑋 → ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) ) |
98 |
56 97
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |
99 |
43 45 98
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → ( 𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) ) |
100 |
|
elixp2 |
⊢ ( 𝐹 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐹 ‘ 𝑘 ) ∈ ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) ) |
101 |
99 100
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 1 / 𝑛 ) < 𝐶 ) → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |
102 |
101
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝑛 ) < 𝐶 → 𝐹 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) ) |
103 |
102
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐶 → ∃ 𝑛 ∈ ℕ 𝐹 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) ) |
104 |
41 103
|
mpd |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ 𝐹 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |
105 |
|
eliun |
⊢ ( 𝐹 ∈ ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ↔ ∃ 𝑛 ∈ ℕ 𝐹 ∈ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |
106 |
104 105
|
sylibr |
⊢ ( 𝜑 → 𝐹 ∈ ∪ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 + ( 1 / 𝑛 ) ) [,) 𝐵 ) ) |