Metamath Proof Explorer


Theorem iunhoiioolem

Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iunhoiioolem.K k φ
iunhoiioolem.x φ X Fin
iunhoiioolem.n φ X
iunhoiioolem.a φ k X A
iunhoiioolem.b φ k X B *
iunhoiioolem.f φ F k X A B
iunhoiioolem.c C = sup ran k X F k A <
Assertion iunhoiioolem φ F n k X A + 1 n B

Proof

Step Hyp Ref Expression
1 iunhoiioolem.K k φ
2 iunhoiioolem.x φ X Fin
3 iunhoiioolem.n φ X
4 iunhoiioolem.a φ k X A
5 iunhoiioolem.b φ k X B *
6 iunhoiioolem.f φ F k X A B
7 iunhoiioolem.c C = sup ran k X F k A <
8 eqid k X F k A = k X F k A
9 ixpf F k X A B F : X k X A B
10 6 9 syl φ F : X k X A B
11 ioossre A B
12 11 rgenw k X A B
13 12 a1i φ k X A B
14 iunss k X A B k X A B
15 13 14 sylibr φ k X A B
16 10 15 fssd φ F : X
17 16 ffvelrnda φ k X F k
18 17 4 resubcld φ k X F k A
19 4 rexrd φ k X A *
20 6 adantr φ k X F k X A B
21 simpr φ k X k X
22 fvixp2 F k X A B k X F k A B
23 20 21 22 syl2anc φ k X F k A B
24 ioogtlb A * B * F k A B A < F k
25 19 5 23 24 syl3anc φ k X A < F k
26 4 17 posdifd φ k X A < F k 0 < F k A
27 25 26 mpbid φ k X 0 < F k A
28 18 27 elrpd φ k X F k A +
29 1 8 28 rnmptssd φ ran k X F k A +
30 ltso < Or
31 30 a1i φ < Or
32 8 rnmptfi X Fin ran k X F k A Fin
33 2 32 syl φ ran k X F k A Fin
34 1 28 8 3 rnmptn0 φ ran k X F k A
35 1 8 18 rnmptssd φ ran k X F k A
36 fiinfcl < Or ran k X F k A Fin ran k X F k A ran k X F k A sup ran k X F k A < ran k X F k A
37 31 33 34 35 36 syl13anc φ sup ran k X F k A < ran k X F k A
38 7 37 eqeltrid φ C ran k X F k A
39 29 38 sseldd φ C +
40 rpgtrecnn C + n 1 n < C
41 39 40 syl φ n 1 n < C
42 6 elexd φ F V
43 42 ad2antrr φ n 1 n < C F V
44 10 ffnd φ F Fn X
45 44 ad2antrr φ n 1 n < C F Fn X
46 nfv k n
47 1 46 nfan k φ n
48 nfcv _ k 1 n
49 nfcv _ k <
50 nfmpt1 _ k k X F k A
51 50 nfrn _ k ran k X F k A
52 nfcv _ k
53 51 52 49 nfinf _ k sup ran k X F k A <
54 7 53 nfcxfr _ k C
55 48 49 54 nfbr k 1 n < C
56 47 55 nfan k φ n 1 n < C
57 4 adantlr φ n k X A
58 nnrecre n 1 n
59 58 ad2antlr φ n k X 1 n
60 57 59 readdcld φ n k X A + 1 n
61 60 rexrd φ n k X A + 1 n *
62 61 adantlr φ n 1 n < C k X A + 1 n *
63 5 adantlr φ n k X B *
64 63 adantlr φ n 1 n < C k X B *
65 ressxr *
66 65 a1i φ *
67 16 66 fssd φ F : X *
68 67 ad2antrr φ n 1 n < C F : X *
69 68 ffvelrnda φ n 1 n < C k X F k *
70 60 adantlr φ n 1 n < C k X A + 1 n
71 17 ad4ant14 φ n 1 n < C k X F k
72 59 adantlr φ n 1 n < C k X 1 n
73 35 38 sseldd φ C
74 73 ad3antrrr φ n 1 n < C k X C
75 18 ad4ant14 φ n 1 n < C k X F k A
76 simplr φ n 1 n < C k X 1 n < C
77 35 ad2antrr φ n k X ran k X F k A
78 33 ad2antrr φ n k X ran k X F k A Fin
79 id k X k X
80 ovexd k X F k A V
81 8 elrnmpt1 k X F k A V F k A ran k X F k A
82 79 80 81 syl2anc k X F k A ran k X F k A
83 82 adantl φ n k X F k A ran k X F k A
84 infrefilb ran k X F k A ran k X F k A Fin F k A ran k X F k A sup ran k X F k A < F k A
85 77 78 83 84 syl3anc φ n k X sup ran k X F k A < F k A
86 7 85 eqbrtrid φ n k X C F k A
87 86 adantlr φ n 1 n < C k X C F k A
88 72 74 75 76 87 ltletrd φ n 1 n < C k X 1 n < F k A
89 57 adantlr φ n 1 n < C k X A
90 89 72 71 ltaddsub2d φ n 1 n < C k X A + 1 n < F k 1 n < F k A
91 88 90 mpbird φ n 1 n < C k X A + 1 n < F k
92 70 71 91 ltled φ n 1 n < C k X A + 1 n F k
93 iooltub A * B * F k A B F k < B
94 19 5 23 93 syl3anc φ k X F k < B
95 94 ad4ant14 φ n 1 n < C k X F k < B
96 62 64 69 92 95 elicod φ n 1 n < C k X F k A + 1 n B
97 96 ex φ n 1 n < C k X F k A + 1 n B
98 56 97 ralrimi φ n 1 n < C k X F k A + 1 n B
99 43 45 98 3jca φ n 1 n < C F V F Fn X k X F k A + 1 n B
100 elixp2 F k X A + 1 n B F V F Fn X k X F k A + 1 n B
101 99 100 sylibr φ n 1 n < C F k X A + 1 n B
102 101 ex φ n 1 n < C F k X A + 1 n B
103 102 reximdva φ n 1 n < C n F k X A + 1 n B
104 41 103 mpd φ n F k X A + 1 n B
105 eliun F n k X A + 1 n B n F k X A + 1 n B
106 104 105 sylibr φ F n k X A + 1 n B