Metamath Proof Explorer


Theorem iunhoiioolem

Description: A n-dimensional open interval expressed as the indexed union of half-open intervals. One side of the double inclusion. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses iunhoiioolem.K kφ
iunhoiioolem.x φXFin
iunhoiioolem.n φX
iunhoiioolem.a φkXA
iunhoiioolem.b φkXB*
iunhoiioolem.f φFkXAB
iunhoiioolem.c C=suprankXFkA<
Assertion iunhoiioolem φFnkXA+1nB

Proof

Step Hyp Ref Expression
1 iunhoiioolem.K kφ
2 iunhoiioolem.x φXFin
3 iunhoiioolem.n φX
4 iunhoiioolem.a φkXA
5 iunhoiioolem.b φkXB*
6 iunhoiioolem.f φFkXAB
7 iunhoiioolem.c C=suprankXFkA<
8 eqid kXFkA=kXFkA
9 ixpf FkXABF:XkXAB
10 6 9 syl φF:XkXAB
11 ioossre AB
12 11 rgenw kXAB
13 12 a1i φkXAB
14 iunss kXABkXAB
15 13 14 sylibr φkXAB
16 10 15 fssd φF:X
17 16 ffvelcdmda φkXFk
18 17 4 resubcld φkXFkA
19 4 rexrd φkXA*
20 6 adantr φkXFkXAB
21 simpr φkXkX
22 fvixp2 FkXABkXFkAB
23 20 21 22 syl2anc φkXFkAB
24 ioogtlb A*B*FkABA<Fk
25 19 5 23 24 syl3anc φkXA<Fk
26 4 17 posdifd φkXA<Fk0<FkA
27 25 26 mpbid φkX0<FkA
28 18 27 elrpd φkXFkA+
29 1 8 28 rnmptssd φrankXFkA+
30 ltso <Or
31 30 a1i φ<Or
32 8 rnmptfi XFinrankXFkAFin
33 2 32 syl φrankXFkAFin
34 1 18 8 3 rnmptn0 φrankXFkA
35 1 8 18 rnmptssd φrankXFkA
36 fiinfcl <OrrankXFkAFinrankXFkArankXFkAsuprankXFkA<rankXFkA
37 31 33 34 35 36 syl13anc φsuprankXFkA<rankXFkA
38 7 37 eqeltrid φCrankXFkA
39 29 38 sseldd φC+
40 rpgtrecnn C+n1n<C
41 39 40 syl φn1n<C
42 6 elexd φFV
43 42 ad2antrr φn1n<CFV
44 10 ffnd φFFnX
45 44 ad2antrr φn1n<CFFnX
46 nfv kn
47 1 46 nfan kφn
48 nfcv _k1n
49 nfcv _k<
50 nfmpt1 _kkXFkA
51 50 nfrn _krankXFkA
52 nfcv _k
53 51 52 49 nfinf _ksuprankXFkA<
54 7 53 nfcxfr _kC
55 48 49 54 nfbr k1n<C
56 47 55 nfan kφn1n<C
57 4 adantlr φnkXA
58 nnrecre n1n
59 58 ad2antlr φnkX1n
60 57 59 readdcld φnkXA+1n
61 60 rexrd φnkXA+1n*
62 61 adantlr φn1n<CkXA+1n*
63 5 adantlr φnkXB*
64 63 adantlr φn1n<CkXB*
65 ressxr *
66 65 a1i φ*
67 16 66 fssd φF:X*
68 67 ad2antrr φn1n<CF:X*
69 68 ffvelcdmda φn1n<CkXFk*
70 60 adantlr φn1n<CkXA+1n
71 17 ad4ant14 φn1n<CkXFk
72 59 adantlr φn1n<CkX1n
73 35 38 sseldd φC
74 73 ad3antrrr φn1n<CkXC
75 18 ad4ant14 φn1n<CkXFkA
76 simplr φn1n<CkX1n<C
77 35 ad2antrr φnkXrankXFkA
78 33 ad2antrr φnkXrankXFkAFin
79 id kXkX
80 ovexd kXFkAV
81 8 elrnmpt1 kXFkAVFkArankXFkA
82 79 80 81 syl2anc kXFkArankXFkA
83 82 adantl φnkXFkArankXFkA
84 infrefilb rankXFkArankXFkAFinFkArankXFkAsuprankXFkA<FkA
85 77 78 83 84 syl3anc φnkXsuprankXFkA<FkA
86 7 85 eqbrtrid φnkXCFkA
87 86 adantlr φn1n<CkXCFkA
88 72 74 75 76 87 ltletrd φn1n<CkX1n<FkA
89 57 adantlr φn1n<CkXA
90 89 72 71 ltaddsub2d φn1n<CkXA+1n<Fk1n<FkA
91 88 90 mpbird φn1n<CkXA+1n<Fk
92 70 71 91 ltled φn1n<CkXA+1nFk
93 iooltub A*B*FkABFk<B
94 19 5 23 93 syl3anc φkXFk<B
95 94 ad4ant14 φn1n<CkXFk<B
96 62 64 69 92 95 elicod φn1n<CkXFkA+1nB
97 96 ex φn1n<CkXFkA+1nB
98 56 97 ralrimi φn1n<CkXFkA+1nB
99 43 45 98 3jca φn1n<CFVFFnXkXFkA+1nB
100 elixp2 FkXA+1nBFVFFnXkXFkA+1nB
101 99 100 sylibr φn1n<CFkXA+1nB
102 101 ex φn1n<CFkXA+1nB
103 102 reximdva φn1n<CnFkXA+1nB
104 41 103 mpd φnFkXA+1nB
105 eliun FnkXA+1nBnFkXA+1nB
106 104 105 sylibr φFnkXA+1nB