| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonioolem1.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
vonioolem1.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
| 3 |
|
vonioolem1.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
| 4 |
|
vonioolem1.u |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 5 |
|
vonioolem1.t |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
| 6 |
|
vonioolem1.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
| 7 |
|
vonioolem1.d |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 8 |
|
vonioolem1.s |
⊢ 𝑆 = ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) |
| 9 |
|
vonioolem1.r |
⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 10 |
|
vonioolem1.e |
⊢ 𝐸 = inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) |
| 11 |
|
vonioolem1.n |
⊢ 𝑁 = ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 ) |
| 12 |
|
vonioolem1.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
| 13 |
9
|
a1i |
⊢ ( 𝜑 → 𝑇 = ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) ) |
| 14 |
6
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) ) |
| 15 |
1
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ∈ V ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ∈ V ) |
| 17 |
14 16
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
| 18 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ∈ V ) |
| 19 |
17 18
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
| 20 |
19
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
| 21 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 22 |
21
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℂ ) |
| 24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 : 𝑋 ⟶ ℝ ) |
| 25 |
24
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
| 26 |
25
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 27 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
| 28 |
27
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 29 |
28
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 30 |
23 26 29
|
subsub4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) − ( 1 / 𝑛 ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
| 31 |
20 30
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) = ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) − ( 1 / 𝑛 ) ) ) |
| 32 |
31
|
prodeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) − ( 1 / 𝑛 ) ) ) |
| 33 |
32
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) = ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) − ( 1 / 𝑛 ) ) ) ) |
| 34 |
13 33
|
eqtrd |
⊢ ( 𝜑 → 𝑇 = ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) − ( 1 / 𝑛 ) ) ) ) |
| 35 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 36 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 37 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
| 38 |
|
difrp |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) → ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ↔ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ+ ) ) |
| 39 |
37 21 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ↔ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ+ ) ) |
| 40 |
5 39
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ+ ) |
| 41 |
36 40
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) |
| 42 |
41
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
| 43 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) − ( 1 / 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) − ( 1 / 𝑛 ) ) ) |
| 44 |
35 1 42 43
|
fprodsubrecnncnv |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) − ( 1 / 𝑛 ) ) ) ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 45 |
34 44
|
eqbrtrd |
⊢ ( 𝜑 → 𝑇 ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 46 |
|
nnex |
⊢ ℕ ∈ V |
| 47 |
46
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) ∈ V |
| 48 |
47
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) ∈ V ) |
| 49 |
9 48
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 50 |
46
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ∈ V |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ∈ V ) |
| 52 |
8 51
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 53 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 54 |
53
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 55 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 56 |
35 55 40
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ⊆ ℝ+ ) |
| 57 |
|
ltso |
⊢ < Or ℝ |
| 58 |
57
|
a1i |
⊢ ( 𝜑 → < Or ℝ ) |
| 59 |
55
|
rnmptfi |
⊢ ( 𝑋 ∈ Fin → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ∈ Fin ) |
| 60 |
1 59
|
syl |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ∈ Fin ) |
| 61 |
35 40 55 4
|
rnmptn0 |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ≠ ∅ ) |
| 62 |
36
|
a1i |
⊢ ( 𝜑 → ℝ+ ⊆ ℝ ) |
| 63 |
56 62
|
sstrd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ⊆ ℝ ) |
| 64 |
|
fiinfcl |
⊢ ( ( < Or ℝ ∧ ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ∈ Fin ∧ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ≠ ∅ ∧ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ⊆ ℝ ) ) → inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 65 |
58 60 61 63 64
|
syl13anc |
⊢ ( 𝜑 → inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 66 |
10 65
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 67 |
56 66
|
sseldd |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 68 |
54 67
|
rpdivcld |
⊢ ( 𝜑 → ( 1 / 𝐸 ) ∈ ℝ+ ) |
| 69 |
68
|
rpred |
⊢ ( 𝜑 → ( 1 / 𝐸 ) ∈ ℝ ) |
| 70 |
68
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( 1 / 𝐸 ) ) |
| 71 |
|
flge0nn0 |
⊢ ( ( ( 1 / 𝐸 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝐸 ) ) → ( ⌊ ‘ ( 1 / 𝐸 ) ) ∈ ℕ0 ) |
| 72 |
69 70 71
|
syl2anc |
⊢ ( 𝜑 → ( ⌊ ‘ ( 1 / 𝐸 ) ) ∈ ℕ0 ) |
| 73 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ ( 1 / 𝐸 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 ) ∈ ℕ ) |
| 74 |
72 73
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 ) ∈ ℕ ) |
| 75 |
74
|
nnzd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 1 / 𝐸 ) ) + 1 ) ∈ ℤ ) |
| 76 |
11 75
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 77 |
11
|
recnnltrp |
⊢ ( 𝐸 ∈ ℝ+ → ( 𝑁 ∈ ℕ ∧ ( 1 / 𝑁 ) < 𝐸 ) ) |
| 78 |
67 77
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ ( 1 / 𝑁 ) < 𝐸 ) ) |
| 79 |
78
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 80 |
|
uznnssnn |
⊢ ( 𝑁 ∈ ℕ → ( ℤ≥ ‘ 𝑁 ) ⊆ ℕ ) |
| 81 |
79 80
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ ℕ ) |
| 82 |
12 81
|
eqsstrid |
⊢ ( 𝜑 → 𝑍 ⊆ ℕ ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑍 ⊆ ℕ ) |
| 84 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
| 85 |
83 84
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ ℕ ) |
| 86 |
7
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 87 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ Fin ) |
| 88 |
|
eqid |
⊢ dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 ) |
| 89 |
25 28
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 90 |
89
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ ) |
| 91 |
17
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ↔ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ ) ) |
| 92 |
90 91
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ) |
| 93 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐵 : 𝑋 ⟶ ℝ ) |
| 94 |
87 88 92 93
|
hoimbl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) ) |
| 95 |
94
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ V ) |
| 96 |
86 95
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 97 |
85 96
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐷 ‘ 𝑛 ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
| 98 |
97
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) = ( ( voln ‘ 𝑋 ) ‘ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 99 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑋 ∈ Fin ) |
| 100 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑋 ≠ ∅ ) |
| 101 |
85 92
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ) |
| 102 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝐵 : 𝑋 ⟶ ℝ ) |
| 103 |
|
eqid |
⊢ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) |
| 104 |
99 100 101 102 103
|
vonn0hoi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( voln ‘ 𝑋 ) ‘ X 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 105 |
101
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ∈ ℝ ) |
| 106 |
85 22
|
syldanl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
| 107 |
|
volico |
⊢ ( ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) → ( vol ‘ ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = if ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) , 0 ) ) |
| 108 |
105 106 107
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = if ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) , 0 ) ) |
| 109 |
85 19
|
syldanl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
| 110 |
85 28
|
syldanl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 111 |
79
|
nnrecred |
⊢ ( 𝜑 → ( 1 / 𝑁 ) ∈ ℝ ) |
| 112 |
111
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑁 ) ∈ ℝ ) |
| 113 |
41
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) |
| 114 |
12
|
eleq2i |
⊢ ( 𝑛 ∈ 𝑍 ↔ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 115 |
114
|
biimpi |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 116 |
|
eluzle |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝑛 ) |
| 117 |
115 116
|
syl |
⊢ ( 𝑛 ∈ 𝑍 → 𝑁 ≤ 𝑛 ) |
| 118 |
117
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑁 ≤ 𝑛 ) |
| 119 |
79
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
| 120 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑁 ∈ ℝ+ ) |
| 121 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 122 |
85 121
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ ℝ+ ) |
| 123 |
120 122
|
lerecd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑁 ≤ 𝑛 ↔ ( 1 / 𝑛 ) ≤ ( 1 / 𝑁 ) ) ) |
| 124 |
118 123
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 1 / 𝑛 ) ≤ ( 1 / 𝑁 ) ) |
| 125 |
124
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ≤ ( 1 / 𝑁 ) ) |
| 126 |
111
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑁 ) ∈ ℝ ) |
| 127 |
36 67
|
sselid |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 128 |
127
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐸 ∈ ℝ ) |
| 129 |
78
|
simprd |
⊢ ( 𝜑 → ( 1 / 𝑁 ) < 𝐸 ) |
| 130 |
129
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑁 ) < 𝐸 ) |
| 131 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ⊆ ℝ ) |
| 132 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ∈ Fin ) |
| 133 |
|
id |
⊢ ( 𝑘 ∈ 𝑋 → 𝑘 ∈ 𝑋 ) |
| 134 |
|
ovexd |
⊢ ( 𝑘 ∈ 𝑋 → ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ V ) |
| 135 |
55
|
elrnmpt1 |
⊢ ( ( 𝑘 ∈ 𝑋 ∧ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ V ) → ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 136 |
133 134 135
|
syl2anc |
⊢ ( 𝑘 ∈ 𝑋 → ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 137 |
136
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 138 |
|
infrefilb |
⊢ ( ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ⊆ ℝ ∧ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ∈ Fin ∧ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ) → inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ≤ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 139 |
131 132 137 138
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → inf ( ran ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) , ℝ , < ) ≤ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 140 |
10 139
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝐸 ≤ ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 141 |
126 128 41 130 140
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑁 ) < ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 142 |
141
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑁 ) < ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 143 |
110 112 113 125 142
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) < ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
| 144 |
85 25
|
syldanl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
| 145 |
144 110 106
|
ltaddsub2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) < ( 𝐵 ‘ 𝑘 ) ↔ ( 1 / 𝑛 ) < ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 146 |
143 145
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) < ( 𝐵 ‘ 𝑘 ) ) |
| 147 |
109 146
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
| 148 |
147
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → if ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) , 0 ) = ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 149 |
108 148
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 150 |
149
|
prodeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 151 |
98 104 150
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 152 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ∈ V ) |
| 153 |
8
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ∈ V ) → ( 𝑆 ‘ 𝑛 ) = ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) |
| 154 |
85 152 153
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑆 ‘ 𝑛 ) = ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) |
| 155 |
|
prodex |
⊢ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ∈ V |
| 156 |
155
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ∈ V ) |
| 157 |
9
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ∈ V ) → ( 𝑇 ‘ 𝑛 ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 158 |
85 156 157
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑇 ‘ 𝑛 ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
| 159 |
151 154 158
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑇 ‘ 𝑛 ) = ( 𝑆 ‘ 𝑛 ) ) |
| 160 |
12 49 52 76 159
|
climeq |
⊢ ( 𝜑 → ( 𝑇 ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ↔ 𝑆 ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ) |
| 161 |
45 160
|
mpbid |
⊢ ( 𝜑 → 𝑆 ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |