Step |
Hyp |
Ref |
Expression |
1 |
|
vonioo.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
vonioo.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
3 |
|
vonioo.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
4 |
|
vonioo.i |
⊢ 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) |
5 |
|
vonioo.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐴 : 𝑋 ⟶ ℝ ) |
7 |
|
feq2 |
⊢ ( 𝑋 = ∅ → ( 𝐴 : 𝑋 ⟶ ℝ ↔ 𝐴 : ∅ ⟶ ℝ ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 : 𝑋 ⟶ ℝ ↔ 𝐴 : ∅ ⟶ ℝ ) ) |
9 |
6 8
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐴 : ∅ ⟶ ℝ ) |
10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐵 : 𝑋 ⟶ ℝ ) |
11 |
|
feq2 |
⊢ ( 𝑋 = ∅ → ( 𝐵 : 𝑋 ⟶ ℝ ↔ 𝐵 : ∅ ⟶ ℝ ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐵 : 𝑋 ⟶ ℝ ↔ 𝐵 : ∅ ⟶ ℝ ) ) |
13 |
10 12
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐵 : ∅ ⟶ ℝ ) |
14 |
5 9 13
|
hoidmv0val |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 ) = 0 ) |
15 |
14
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 0 = ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑋 = ∅ → ( voln ‘ 𝑋 ) = ( voln ‘ ∅ ) ) |
17 |
4
|
a1i |
⊢ ( 𝑋 = ∅ → 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
18 |
|
ixpeq1 |
⊢ ( 𝑋 = ∅ → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
19 |
17 18
|
eqtrd |
⊢ ( 𝑋 = ∅ → 𝐼 = X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
20 |
16 19
|
fveq12d |
⊢ ( 𝑋 = ∅ → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln ‘ ∅ ) ‘ X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln ‘ ∅ ) ‘ X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
22 |
|
0fin |
⊢ ∅ ∈ Fin |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∅ ∈ Fin ) |
24 |
|
eqid |
⊢ dom ( voln ‘ ∅ ) = dom ( voln ‘ ∅ ) |
25 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
26 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ℝ ⊆ ℝ* ) |
27 |
9 26
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐴 : ∅ ⟶ ℝ* ) |
28 |
13 26
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐵 : ∅ ⟶ ℝ* ) |
29 |
23 24 27 28
|
ioovonmbl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom ( voln ‘ ∅ ) ) |
30 |
29
|
von0val |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln ‘ ∅ ) ‘ X 𝑘 ∈ ∅ ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) = 0 ) |
31 |
21 30
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = 0 ) |
32 |
|
fveq2 |
⊢ ( 𝑋 = ∅ → ( 𝐿 ‘ 𝑋 ) = ( 𝐿 ‘ ∅ ) ) |
33 |
32
|
oveqd |
⊢ ( 𝑋 = ∅ → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ( 𝐴 ( 𝐿 ‘ ∅ ) 𝐵 ) ) |
35 |
15 31 34
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
36 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
38 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑋 ≠ ∅ ) |
39 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) |
40 |
38 39
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
41 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
42 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
43 |
|
volico |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = if ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) ) |
44 |
41 42 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = if ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) ) |
45 |
44
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = if ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) ) |
46 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
47 |
46
|
iftrued |
⊢ ( ( ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ∧ 𝑘 ∈ 𝑋 ) → if ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
48 |
47
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) ∧ 𝑘 ∈ 𝑋 ) → if ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) , ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
49 |
45 48
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
50 |
49
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ( 𝑘 ∈ 𝑋 → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) ) |
51 |
40 50
|
ralrimi |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
52 |
51
|
prodeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
53 |
52
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
54 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑗 ) ) |
55 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 ‘ 𝑘 ) = ( 𝐵 ‘ 𝑗 ) ) |
56 |
54 55
|
breq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ↔ ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) ) ) |
57 |
56
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ↔ ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) ) |
58 |
57
|
biimpi |
⊢ ( ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) → ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) ) |
59 |
58
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) ) |
60 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝑋 ∈ Fin ) |
61 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) ) → 𝑋 ∈ Fin ) |
62 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝐴 : 𝑋 ⟶ ℝ ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) ) → 𝐴 : 𝑋 ⟶ ℝ ) |
64 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝐵 : 𝑋 ⟶ ℝ ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) ) → 𝐵 : 𝑋 ⟶ ℝ ) |
66 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝑋 ≠ ∅ ) |
67 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) ) → 𝑋 ≠ ∅ ) |
68 |
57 46
|
sylanbr |
⊢ ( ( ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
69 |
68
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
70 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 ‘ 𝑗 ) = ( 𝐴 ‘ 𝑘 ) ) |
71 |
70
|
oveq1d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) = ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) |
72 |
71
|
cbvmptv |
⊢ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) |
73 |
72
|
a1i |
⊢ ( 𝑚 = 𝑛 → ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) ) |
74 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 1 / 𝑚 ) = ( 1 / 𝑛 ) ) |
75 |
74
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) = ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
76 |
75
|
mpteq2dv |
⊢ ( 𝑚 = 𝑛 → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
77 |
73 76
|
eqtrd |
⊢ ( 𝑚 = 𝑛 → ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
78 |
77
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
79 |
|
nfcv |
⊢ Ⅎ 𝑛 X 𝑘 ∈ 𝑋 ( ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) |
80 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑋 |
81 |
|
nffvmpt1 |
⊢ Ⅎ 𝑚 ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑛 ) |
82 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑘 |
83 |
81 82
|
nffv |
⊢ Ⅎ 𝑚 ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) |
84 |
|
nfcv |
⊢ Ⅎ 𝑚 [,) |
85 |
|
nfcv |
⊢ Ⅎ 𝑚 ( 𝐵 ‘ 𝑘 ) |
86 |
83 84 85
|
nfov |
⊢ Ⅎ 𝑚 ( ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) |
87 |
80 86
|
nfixpw |
⊢ Ⅎ 𝑚 X 𝑘 ∈ 𝑋 ( ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) |
88 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑚 ) = ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑛 ) ) |
89 |
88
|
fveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑚 ) ‘ 𝑘 ) = ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) ) |
90 |
89
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = ( ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
91 |
90
|
ixpeq2dv |
⊢ ( 𝑚 = 𝑛 → X 𝑘 ∈ 𝑋 ( ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
92 |
79 87 91
|
cbvmpt |
⊢ ( 𝑚 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑚 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( ( ( 𝑚 ∈ ℕ ↦ ( 𝑗 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑗 ) + ( 1 / 𝑚 ) ) ) ) ‘ 𝑛 ) ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) |
93 |
61 63 65 67 69 4 78 92
|
vonioolem2 |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑗 ∈ 𝑋 ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
94 |
59 93
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
95 |
5 60 66 62 64
|
hoidmvn0val |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
96 |
95
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
97 |
53 94 96
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
98 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ 𝑋 ¬ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ↔ ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
99 |
98
|
bicomi |
⊢ ( ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ↔ ∃ 𝑘 ∈ 𝑋 ¬ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
100 |
99
|
biimpi |
⊢ ( ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) → ∃ 𝑘 ∈ 𝑋 ¬ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
101 |
100
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ∃ 𝑘 ∈ 𝑋 ¬ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
102 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ¬ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) |
103 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
104 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
105 |
103 104
|
lenltd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ( ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ↔ ¬ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) ) |
106 |
102 105
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) ∧ ¬ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) |
107 |
106
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ¬ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) → ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) ) |
108 |
107
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑋 ¬ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) → ∃ 𝑘 ∈ 𝑋 ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) ) |
109 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ( ∃ 𝑘 ∈ 𝑋 ¬ ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) → ∃ 𝑘 ∈ 𝑋 ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) ) |
110 |
101 109
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ∃ 𝑘 ∈ 𝑋 ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) |
111 |
110
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ∃ 𝑘 ∈ 𝑋 ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) |
112 |
|
nfcv |
⊢ Ⅎ 𝑘 ( voln ‘ 𝑋 ) |
113 |
|
nfixp1 |
⊢ Ⅎ 𝑘 X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) |
114 |
4 113
|
nfcxfr |
⊢ Ⅎ 𝑘 𝐼 |
115 |
112 114
|
nffv |
⊢ Ⅎ 𝑘 ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) |
116 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) |
117 |
115 116
|
nfeq |
⊢ Ⅎ 𝑘 ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) |
118 |
1
|
vonmea |
⊢ ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas ) |
119 |
118
|
mea0 |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ ∅ ) = 0 ) |
120 |
119
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → ( ( voln ‘ 𝑋 ) ‘ ∅ ) = 0 ) |
121 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) ) |
122 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → 𝑘 ∈ 𝑋 ) |
123 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) |
124 |
25 41
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ* ) |
125 |
124
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ* ) |
126 |
25 42
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
127 |
126
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) |
128 |
|
ioo0 |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ* ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ* ) → ( ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) = ∅ ↔ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) ) |
129 |
125 127 128
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → ( ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) = ∅ ↔ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) ) |
130 |
123 129
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) = ∅ ) |
131 |
|
rspe |
⊢ ( ( 𝑘 ∈ 𝑋 ∧ ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) = ∅ ) → ∃ 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) = ∅ ) |
132 |
122 130 131
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → ∃ 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) = ∅ ) |
133 |
|
ixp0 |
⊢ ( ∃ 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) = ∅ → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) = ∅ ) |
134 |
132 133
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) (,) ( 𝐵 ‘ 𝑘 ) ) = ∅ ) |
135 |
121 134
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → 𝐼 = ∅ ) |
136 |
135
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln ‘ 𝑋 ) ‘ ∅ ) ) |
137 |
|
ne0i |
⊢ ( 𝑘 ∈ 𝑋 → 𝑋 ≠ ∅ ) |
138 |
137
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑋 ≠ ∅ ) |
139 |
138 95
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
140 |
139
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
141 |
|
eleq1w |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 ∈ 𝑋 ↔ 𝑘 ∈ 𝑋 ) ) |
142 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐵 ‘ 𝑗 ) = ( 𝐵 ‘ 𝑘 ) ) |
143 |
142 70
|
breq12d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ↔ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) ) |
144 |
141 143
|
3anbi23d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) ↔ ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) ) ) |
145 |
144
|
imbi1d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = 0 ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = 0 ) ) ) |
146 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) |
147 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) → 𝑋 ∈ Fin ) |
148 |
|
volicore |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
149 |
41 42 148
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℝ ) |
150 |
149
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℂ ) |
151 |
150
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ∈ ℂ ) |
152 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) → 𝑗 ∈ 𝑋 ) |
153 |
54 55
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) |
154 |
153
|
fveq2d |
⊢ ( 𝑘 = 𝑗 → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) ) |
155 |
154
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) ∧ 𝑘 = 𝑗 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) ) |
156 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑗 ) ∈ ℝ ) |
157 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) |
158 |
|
volico |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℝ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) = if ( ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) , ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) , 0 ) ) |
159 |
156 157 158
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) = if ( ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) , ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) , 0 ) ) |
160 |
159
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) → ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) = if ( ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) , ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) , 0 ) ) |
161 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) → ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) |
162 |
157 156
|
lenltd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ↔ ¬ ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) ) ) |
163 |
162
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) → ( ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ↔ ¬ ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) ) ) |
164 |
161 163
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) → ¬ ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) ) |
165 |
164
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) → if ( ( 𝐴 ‘ 𝑗 ) < ( 𝐵 ‘ 𝑗 ) , ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) , 0 ) = 0 ) |
166 |
160 165
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) → ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) = 0 ) |
167 |
166
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) ∧ 𝑘 = 𝑗 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑗 ) [,) ( 𝐵 ‘ 𝑗 ) ) ) = 0 ) |
168 |
155 167
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) ∧ 𝑘 = 𝑗 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = 0 ) |
169 |
146 147 151 152 168
|
fprodeq0g |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑗 ) ≤ ( 𝐴 ‘ 𝑗 ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = 0 ) |
170 |
145 169
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) = 0 ) |
171 |
140 170
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = 0 ) |
172 |
120 136 171
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ∧ ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
173 |
172
|
3exp |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 → ( ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) ) ) |
174 |
173
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( 𝑘 ∈ 𝑋 → ( ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) ) ) |
175 |
38 117 174
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑘 ∈ 𝑋 ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) ) |
176 |
175
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ∃ 𝑘 ∈ 𝑋 ( 𝐵 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
177 |
111 176
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) ∧ ¬ ∀ 𝑘 ∈ 𝑋 ( 𝐴 ‘ 𝑘 ) < ( 𝐵 ‘ 𝑘 ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
178 |
97 177
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
179 |
37 178
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
180 |
35 179
|
pm2.61dan |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |