Step |
Hyp |
Ref |
Expression |
1 |
|
vonioo.x |
|- ( ph -> X e. Fin ) |
2 |
|
vonioo.a |
|- ( ph -> A : X --> RR ) |
3 |
|
vonioo.b |
|- ( ph -> B : X --> RR ) |
4 |
|
vonioo.i |
|- I = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) |
5 |
|
vonioo.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
6 |
2
|
adantr |
|- ( ( ph /\ X = (/) ) -> A : X --> RR ) |
7 |
|
feq2 |
|- ( X = (/) -> ( A : X --> RR <-> A : (/) --> RR ) ) |
8 |
7
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( A : X --> RR <-> A : (/) --> RR ) ) |
9 |
6 8
|
mpbid |
|- ( ( ph /\ X = (/) ) -> A : (/) --> RR ) |
10 |
3
|
adantr |
|- ( ( ph /\ X = (/) ) -> B : X --> RR ) |
11 |
|
feq2 |
|- ( X = (/) -> ( B : X --> RR <-> B : (/) --> RR ) ) |
12 |
11
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( B : X --> RR <-> B : (/) --> RR ) ) |
13 |
10 12
|
mpbid |
|- ( ( ph /\ X = (/) ) -> B : (/) --> RR ) |
14 |
5 9 13
|
hoidmv0val |
|- ( ( ph /\ X = (/) ) -> ( A ( L ` (/) ) B ) = 0 ) |
15 |
14
|
eqcomd |
|- ( ( ph /\ X = (/) ) -> 0 = ( A ( L ` (/) ) B ) ) |
16 |
|
fveq2 |
|- ( X = (/) -> ( voln ` X ) = ( voln ` (/) ) ) |
17 |
4
|
a1i |
|- ( X = (/) -> I = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) |
18 |
|
ixpeq1 |
|- ( X = (/) -> X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) = X_ k e. (/) ( ( A ` k ) (,) ( B ` k ) ) ) |
19 |
17 18
|
eqtrd |
|- ( X = (/) -> I = X_ k e. (/) ( ( A ` k ) (,) ( B ` k ) ) ) |
20 |
16 19
|
fveq12d |
|- ( X = (/) -> ( ( voln ` X ) ` I ) = ( ( voln ` (/) ) ` X_ k e. (/) ( ( A ` k ) (,) ( B ` k ) ) ) ) |
21 |
20
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` I ) = ( ( voln ` (/) ) ` X_ k e. (/) ( ( A ` k ) (,) ( B ` k ) ) ) ) |
22 |
|
0fin |
|- (/) e. Fin |
23 |
22
|
a1i |
|- ( ( ph /\ X = (/) ) -> (/) e. Fin ) |
24 |
|
eqid |
|- dom ( voln ` (/) ) = dom ( voln ` (/) ) |
25 |
|
ressxr |
|- RR C_ RR* |
26 |
25
|
a1i |
|- ( ( ph /\ X = (/) ) -> RR C_ RR* ) |
27 |
9 26
|
fssd |
|- ( ( ph /\ X = (/) ) -> A : (/) --> RR* ) |
28 |
13 26
|
fssd |
|- ( ( ph /\ X = (/) ) -> B : (/) --> RR* ) |
29 |
23 24 27 28
|
ioovonmbl |
|- ( ( ph /\ X = (/) ) -> X_ k e. (/) ( ( A ` k ) (,) ( B ` k ) ) e. dom ( voln ` (/) ) ) |
30 |
29
|
von0val |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` (/) ) ` X_ k e. (/) ( ( A ` k ) (,) ( B ` k ) ) ) = 0 ) |
31 |
21 30
|
eqtrd |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` I ) = 0 ) |
32 |
|
fveq2 |
|- ( X = (/) -> ( L ` X ) = ( L ` (/) ) ) |
33 |
32
|
oveqd |
|- ( X = (/) -> ( A ( L ` X ) B ) = ( A ( L ` (/) ) B ) ) |
34 |
33
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( A ( L ` X ) B ) = ( A ( L ` (/) ) B ) ) |
35 |
15 31 34
|
3eqtr4d |
|- ( ( ph /\ X = (/) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |
36 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
37 |
36
|
adantl |
|- ( ( ph /\ -. X = (/) ) -> X =/= (/) ) |
38 |
|
nfv |
|- F/ k ( ph /\ X =/= (/) ) |
39 |
|
nfra1 |
|- F/ k A. k e. X ( A ` k ) < ( B ` k ) |
40 |
38 39
|
nfan |
|- F/ k ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) < ( B ` k ) ) |
41 |
2
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
42 |
3
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
43 |
|
volico |
|- ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = if ( ( A ` k ) < ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) ) |
44 |
41 42 43
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = if ( ( A ` k ) < ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) ) |
45 |
44
|
ad4ant14 |
|- ( ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) < ( B ` k ) ) /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = if ( ( A ` k ) < ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) ) |
46 |
|
rspa |
|- ( ( A. k e. X ( A ` k ) < ( B ` k ) /\ k e. X ) -> ( A ` k ) < ( B ` k ) ) |
47 |
46
|
iftrued |
|- ( ( A. k e. X ( A ` k ) < ( B ` k ) /\ k e. X ) -> if ( ( A ` k ) < ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) = ( ( B ` k ) - ( A ` k ) ) ) |
48 |
47
|
adantll |
|- ( ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) < ( B ` k ) ) /\ k e. X ) -> if ( ( A ` k ) < ( B ` k ) , ( ( B ` k ) - ( A ` k ) ) , 0 ) = ( ( B ` k ) - ( A ` k ) ) ) |
49 |
45 48
|
eqtrd |
|- ( ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) < ( B ` k ) ) /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( ( B ` k ) - ( A ` k ) ) ) |
50 |
49
|
ex |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) < ( B ` k ) ) -> ( k e. X -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( ( B ` k ) - ( A ` k ) ) ) ) |
51 |
40 50
|
ralrimi |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) < ( B ` k ) ) -> A. k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( ( B ` k ) - ( A ` k ) ) ) |
52 |
51
|
prodeq2d |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) < ( B ` k ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
53 |
52
|
eqcomd |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) < ( B ` k ) ) -> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
54 |
|
fveq2 |
|- ( k = j -> ( A ` k ) = ( A ` j ) ) |
55 |
|
fveq2 |
|- ( k = j -> ( B ` k ) = ( B ` j ) ) |
56 |
54 55
|
breq12d |
|- ( k = j -> ( ( A ` k ) < ( B ` k ) <-> ( A ` j ) < ( B ` j ) ) ) |
57 |
56
|
cbvralvw |
|- ( A. k e. X ( A ` k ) < ( B ` k ) <-> A. j e. X ( A ` j ) < ( B ` j ) ) |
58 |
57
|
biimpi |
|- ( A. k e. X ( A ` k ) < ( B ` k ) -> A. j e. X ( A ` j ) < ( B ` j ) ) |
59 |
58
|
adantl |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) < ( B ` k ) ) -> A. j e. X ( A ` j ) < ( B ` j ) ) |
60 |
1
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> X e. Fin ) |
61 |
60
|
adantr |
|- ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) < ( B ` j ) ) -> X e. Fin ) |
62 |
2
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> A : X --> RR ) |
63 |
62
|
adantr |
|- ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) < ( B ` j ) ) -> A : X --> RR ) |
64 |
3
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> B : X --> RR ) |
65 |
64
|
adantr |
|- ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) < ( B ` j ) ) -> B : X --> RR ) |
66 |
|
simpr |
|- ( ( ph /\ X =/= (/) ) -> X =/= (/) ) |
67 |
66
|
adantr |
|- ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) < ( B ` j ) ) -> X =/= (/) ) |
68 |
57 46
|
sylanbr |
|- ( ( A. j e. X ( A ` j ) < ( B ` j ) /\ k e. X ) -> ( A ` k ) < ( B ` k ) ) |
69 |
68
|
adantll |
|- ( ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) < ( B ` j ) ) /\ k e. X ) -> ( A ` k ) < ( B ` k ) ) |
70 |
|
fveq2 |
|- ( j = k -> ( A ` j ) = ( A ` k ) ) |
71 |
70
|
oveq1d |
|- ( j = k -> ( ( A ` j ) + ( 1 / m ) ) = ( ( A ` k ) + ( 1 / m ) ) ) |
72 |
71
|
cbvmptv |
|- ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) = ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) |
73 |
72
|
a1i |
|- ( m = n -> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) = ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) ) |
74 |
|
oveq2 |
|- ( m = n -> ( 1 / m ) = ( 1 / n ) ) |
75 |
74
|
oveq2d |
|- ( m = n -> ( ( A ` k ) + ( 1 / m ) ) = ( ( A ` k ) + ( 1 / n ) ) ) |
76 |
75
|
mpteq2dv |
|- ( m = n -> ( k e. X |-> ( ( A ` k ) + ( 1 / m ) ) ) = ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) |
77 |
73 76
|
eqtrd |
|- ( m = n -> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) = ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) |
78 |
77
|
cbvmptv |
|- ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) = ( n e. NN |-> ( k e. X |-> ( ( A ` k ) + ( 1 / n ) ) ) ) |
79 |
|
nfcv |
|- F/_ n X_ k e. X ( ( ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` m ) ` k ) [,) ( B ` k ) ) |
80 |
|
nfcv |
|- F/_ m X |
81 |
|
nffvmpt1 |
|- F/_ m ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` n ) |
82 |
|
nfcv |
|- F/_ m k |
83 |
81 82
|
nffv |
|- F/_ m ( ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) |
84 |
|
nfcv |
|- F/_ m [,) |
85 |
|
nfcv |
|- F/_ m ( B ` k ) |
86 |
83 84 85
|
nfov |
|- F/_ m ( ( ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) [,) ( B ` k ) ) |
87 |
80 86
|
nfixpw |
|- F/_ m X_ k e. X ( ( ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) [,) ( B ` k ) ) |
88 |
|
fveq2 |
|- ( m = n -> ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` m ) = ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` n ) ) |
89 |
88
|
fveq1d |
|- ( m = n -> ( ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` m ) ` k ) = ( ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) ) |
90 |
89
|
oveq1d |
|- ( m = n -> ( ( ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` m ) ` k ) [,) ( B ` k ) ) = ( ( ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) [,) ( B ` k ) ) ) |
91 |
90
|
ixpeq2dv |
|- ( m = n -> X_ k e. X ( ( ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` m ) ` k ) [,) ( B ` k ) ) = X_ k e. X ( ( ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) [,) ( B ` k ) ) ) |
92 |
79 87 91
|
cbvmpt |
|- ( m e. NN |-> X_ k e. X ( ( ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` m ) ` k ) [,) ( B ` k ) ) ) = ( n e. NN |-> X_ k e. X ( ( ( ( m e. NN |-> ( j e. X |-> ( ( A ` j ) + ( 1 / m ) ) ) ) ` n ) ` k ) [,) ( B ` k ) ) ) |
93 |
61 63 65 67 69 4 78 92
|
vonioolem2 |
|- ( ( ( ph /\ X =/= (/) ) /\ A. j e. X ( A ` j ) < ( B ` j ) ) -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
94 |
59 93
|
syldan |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) < ( B ` k ) ) -> ( ( voln ` X ) ` I ) = prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
95 |
5 60 66 62 64
|
hoidmvn0val |
|- ( ( ph /\ X =/= (/) ) -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
96 |
95
|
adantr |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) < ( B ` k ) ) -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
97 |
53 94 96
|
3eqtr4d |
|- ( ( ( ph /\ X =/= (/) ) /\ A. k e. X ( A ` k ) < ( B ` k ) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |
98 |
|
rexnal |
|- ( E. k e. X -. ( A ` k ) < ( B ` k ) <-> -. A. k e. X ( A ` k ) < ( B ` k ) ) |
99 |
98
|
bicomi |
|- ( -. A. k e. X ( A ` k ) < ( B ` k ) <-> E. k e. X -. ( A ` k ) < ( B ` k ) ) |
100 |
99
|
biimpi |
|- ( -. A. k e. X ( A ` k ) < ( B ` k ) -> E. k e. X -. ( A ` k ) < ( B ` k ) ) |
101 |
100
|
adantl |
|- ( ( ph /\ -. A. k e. X ( A ` k ) < ( B ` k ) ) -> E. k e. X -. ( A ` k ) < ( B ` k ) ) |
102 |
|
simpr |
|- ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) < ( B ` k ) ) -> -. ( A ` k ) < ( B ` k ) ) |
103 |
42
|
adantr |
|- ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) < ( B ` k ) ) -> ( B ` k ) e. RR ) |
104 |
41
|
adantr |
|- ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) < ( B ` k ) ) -> ( A ` k ) e. RR ) |
105 |
103 104
|
lenltd |
|- ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) < ( B ` k ) ) -> ( ( B ` k ) <_ ( A ` k ) <-> -. ( A ` k ) < ( B ` k ) ) ) |
106 |
102 105
|
mpbird |
|- ( ( ( ph /\ k e. X ) /\ -. ( A ` k ) < ( B ` k ) ) -> ( B ` k ) <_ ( A ` k ) ) |
107 |
106
|
ex |
|- ( ( ph /\ k e. X ) -> ( -. ( A ` k ) < ( B ` k ) -> ( B ` k ) <_ ( A ` k ) ) ) |
108 |
107
|
reximdva |
|- ( ph -> ( E. k e. X -. ( A ` k ) < ( B ` k ) -> E. k e. X ( B ` k ) <_ ( A ` k ) ) ) |
109 |
108
|
adantr |
|- ( ( ph /\ -. A. k e. X ( A ` k ) < ( B ` k ) ) -> ( E. k e. X -. ( A ` k ) < ( B ` k ) -> E. k e. X ( B ` k ) <_ ( A ` k ) ) ) |
110 |
101 109
|
mpd |
|- ( ( ph /\ -. A. k e. X ( A ` k ) < ( B ` k ) ) -> E. k e. X ( B ` k ) <_ ( A ` k ) ) |
111 |
110
|
adantlr |
|- ( ( ( ph /\ X =/= (/) ) /\ -. A. k e. X ( A ` k ) < ( B ` k ) ) -> E. k e. X ( B ` k ) <_ ( A ` k ) ) |
112 |
|
nfcv |
|- F/_ k ( voln ` X ) |
113 |
|
nfixp1 |
|- F/_ k X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) |
114 |
4 113
|
nfcxfr |
|- F/_ k I |
115 |
112 114
|
nffv |
|- F/_ k ( ( voln ` X ) ` I ) |
116 |
|
nfcv |
|- F/_ k ( A ( L ` X ) B ) |
117 |
115 116
|
nfeq |
|- F/ k ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) |
118 |
1
|
vonmea |
|- ( ph -> ( voln ` X ) e. Meas ) |
119 |
118
|
mea0 |
|- ( ph -> ( ( voln ` X ) ` (/) ) = 0 ) |
120 |
119
|
3ad2ant1 |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> ( ( voln ` X ) ` (/) ) = 0 ) |
121 |
4
|
a1i |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> I = X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) ) |
122 |
|
simp2 |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> k e. X ) |
123 |
|
simp3 |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> ( B ` k ) <_ ( A ` k ) ) |
124 |
25 41
|
sseldi |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR* ) |
125 |
124
|
3adant3 |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> ( A ` k ) e. RR* ) |
126 |
25 42
|
sseldi |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR* ) |
127 |
126
|
3adant3 |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> ( B ` k ) e. RR* ) |
128 |
|
ioo0 |
|- ( ( ( A ` k ) e. RR* /\ ( B ` k ) e. RR* ) -> ( ( ( A ` k ) (,) ( B ` k ) ) = (/) <-> ( B ` k ) <_ ( A ` k ) ) ) |
129 |
125 127 128
|
syl2anc |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> ( ( ( A ` k ) (,) ( B ` k ) ) = (/) <-> ( B ` k ) <_ ( A ` k ) ) ) |
130 |
123 129
|
mpbird |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> ( ( A ` k ) (,) ( B ` k ) ) = (/) ) |
131 |
|
rspe |
|- ( ( k e. X /\ ( ( A ` k ) (,) ( B ` k ) ) = (/) ) -> E. k e. X ( ( A ` k ) (,) ( B ` k ) ) = (/) ) |
132 |
122 130 131
|
syl2anc |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> E. k e. X ( ( A ` k ) (,) ( B ` k ) ) = (/) ) |
133 |
|
ixp0 |
|- ( E. k e. X ( ( A ` k ) (,) ( B ` k ) ) = (/) -> X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) = (/) ) |
134 |
132 133
|
syl |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> X_ k e. X ( ( A ` k ) (,) ( B ` k ) ) = (/) ) |
135 |
121 134
|
eqtrd |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> I = (/) ) |
136 |
135
|
fveq2d |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> ( ( voln ` X ) ` I ) = ( ( voln ` X ) ` (/) ) ) |
137 |
|
ne0i |
|- ( k e. X -> X =/= (/) ) |
138 |
137
|
adantl |
|- ( ( ph /\ k e. X ) -> X =/= (/) ) |
139 |
138 95
|
syldan |
|- ( ( ph /\ k e. X ) -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
140 |
139
|
3adant3 |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
141 |
|
eleq1w |
|- ( j = k -> ( j e. X <-> k e. X ) ) |
142 |
|
fveq2 |
|- ( j = k -> ( B ` j ) = ( B ` k ) ) |
143 |
142 70
|
breq12d |
|- ( j = k -> ( ( B ` j ) <_ ( A ` j ) <-> ( B ` k ) <_ ( A ` k ) ) ) |
144 |
141 143
|
3anbi23d |
|- ( j = k -> ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) <-> ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) ) ) |
145 |
144
|
imbi1d |
|- ( j = k -> ( ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) <-> ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) ) ) |
146 |
|
nfv |
|- F/ k ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) |
147 |
1
|
3ad2ant1 |
|- ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> X e. Fin ) |
148 |
|
volicore |
|- ( ( ( A ` k ) e. RR /\ ( B ` k ) e. RR ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
149 |
41 42 148
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. RR ) |
150 |
149
|
recnd |
|- ( ( ph /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. CC ) |
151 |
150
|
3ad2antl1 |
|- ( ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) e. CC ) |
152 |
|
simp2 |
|- ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> j e. X ) |
153 |
54 55
|
oveq12d |
|- ( k = j -> ( ( A ` k ) [,) ( B ` k ) ) = ( ( A ` j ) [,) ( B ` j ) ) ) |
154 |
153
|
fveq2d |
|- ( k = j -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) ) |
155 |
154
|
adantl |
|- ( ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) /\ k = j ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) ) |
156 |
2
|
ffvelrnda |
|- ( ( ph /\ j e. X ) -> ( A ` j ) e. RR ) |
157 |
3
|
ffvelrnda |
|- ( ( ph /\ j e. X ) -> ( B ` j ) e. RR ) |
158 |
|
volico |
|- ( ( ( A ` j ) e. RR /\ ( B ` j ) e. RR ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = if ( ( A ` j ) < ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) ) |
159 |
156 157 158
|
syl2anc |
|- ( ( ph /\ j e. X ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = if ( ( A ` j ) < ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) ) |
160 |
159
|
3adant3 |
|- ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = if ( ( A ` j ) < ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) ) |
161 |
|
simp3 |
|- ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> ( B ` j ) <_ ( A ` j ) ) |
162 |
157 156
|
lenltd |
|- ( ( ph /\ j e. X ) -> ( ( B ` j ) <_ ( A ` j ) <-> -. ( A ` j ) < ( B ` j ) ) ) |
163 |
162
|
3adant3 |
|- ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> ( ( B ` j ) <_ ( A ` j ) <-> -. ( A ` j ) < ( B ` j ) ) ) |
164 |
161 163
|
mpbid |
|- ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> -. ( A ` j ) < ( B ` j ) ) |
165 |
164
|
iffalsed |
|- ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> if ( ( A ` j ) < ( B ` j ) , ( ( B ` j ) - ( A ` j ) ) , 0 ) = 0 ) |
166 |
160 165
|
eqtrd |
|- ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = 0 ) |
167 |
166
|
adantr |
|- ( ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) /\ k = j ) -> ( vol ` ( ( A ` j ) [,) ( B ` j ) ) ) = 0 ) |
168 |
155 167
|
eqtrd |
|- ( ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) /\ k = j ) -> ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) |
169 |
146 147 151 152 168
|
fprodeq0g |
|- ( ( ph /\ j e. X /\ ( B ` j ) <_ ( A ` j ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) |
170 |
145 169
|
chvarvv |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) = 0 ) |
171 |
140 170
|
eqtrd |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> ( A ( L ` X ) B ) = 0 ) |
172 |
120 136 171
|
3eqtr4d |
|- ( ( ph /\ k e. X /\ ( B ` k ) <_ ( A ` k ) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |
173 |
172
|
3exp |
|- ( ph -> ( k e. X -> ( ( B ` k ) <_ ( A ` k ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) ) ) |
174 |
173
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> ( k e. X -> ( ( B ` k ) <_ ( A ` k ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) ) ) |
175 |
38 117 174
|
rexlimd |
|- ( ( ph /\ X =/= (/) ) -> ( E. k e. X ( B ` k ) <_ ( A ` k ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) ) |
176 |
175
|
imp |
|- ( ( ( ph /\ X =/= (/) ) /\ E. k e. X ( B ` k ) <_ ( A ` k ) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |
177 |
111 176
|
syldan |
|- ( ( ( ph /\ X =/= (/) ) /\ -. A. k e. X ( A ` k ) < ( B ` k ) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |
178 |
97 177
|
pm2.61dan |
|- ( ( ph /\ X =/= (/) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |
179 |
37 178
|
syldan |
|- ( ( ph /\ -. X = (/) ) -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |
180 |
35 179
|
pm2.61dan |
|- ( ph -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) ) |