| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonicclem1.x |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | vonicclem1.a |  |-  ( ph -> A : X --> RR ) | 
						
							| 3 |  | vonicclem1.b |  |-  ( ph -> B : X --> RR ) | 
						
							| 4 |  | vonicclem1.u |  |-  ( ph -> X =/= (/) ) | 
						
							| 5 |  | vonicclem1.t |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) <_ ( B ` k ) ) | 
						
							| 6 |  | vonicclem1.c |  |-  C = ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) | 
						
							| 7 |  | vonicclem1.d |  |-  D = ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) | 
						
							| 8 |  | vonicclem1.s |  |-  S = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> S = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ n e. NN ) -> n e. NN ) | 
						
							| 11 | 7 | a1i |  |-  ( ph -> D = ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) ) | 
						
							| 12 | 1 | adantr |  |-  ( ( ph /\ n e. NN ) -> X e. Fin ) | 
						
							| 13 |  | eqid |  |-  dom ( voln ` X ) = dom ( voln ` X ) | 
						
							| 14 | 2 | adantr |  |-  ( ( ph /\ n e. NN ) -> A : X --> RR ) | 
						
							| 15 | 3 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) | 
						
							| 16 | 15 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR ) | 
						
							| 17 |  | nnrecre |  |-  ( n e. NN -> ( 1 / n ) e. RR ) | 
						
							| 18 | 17 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR ) | 
						
							| 19 | 16 18 | readdcld |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / n ) ) e. RR ) | 
						
							| 20 | 19 | fmpttd |  |-  ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) : X --> RR ) | 
						
							| 21 | 6 | a1i |  |-  ( ph -> C = ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) ) | 
						
							| 22 | 1 | mptexd |  |-  ( ph -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) e. _V ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) e. _V ) | 
						
							| 24 | 21 23 | fvmpt2d |  |-  ( ( ph /\ n e. NN ) -> ( C ` n ) = ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) | 
						
							| 25 | 24 | feq1d |  |-  ( ( ph /\ n e. NN ) -> ( ( C ` n ) : X --> RR <-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) : X --> RR ) ) | 
						
							| 26 | 20 25 | mpbird |  |-  ( ( ph /\ n e. NN ) -> ( C ` n ) : X --> RR ) | 
						
							| 27 | 12 13 14 26 | hoimbl |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) e. dom ( voln ` X ) ) | 
						
							| 28 | 27 | elexd |  |-  ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) e. _V ) | 
						
							| 29 | 11 28 | fvmpt2d |  |-  ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) | 
						
							| 30 | 10 29 | syldan |  |-  ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) | 
						
							| 31 | 30 | fveq2d |  |-  ( ( ph /\ n e. NN ) -> ( ( voln ` X ) ` ( D ` n ) ) = ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) ) | 
						
							| 32 | 4 | adantr |  |-  ( ( ph /\ n e. NN ) -> X =/= (/) ) | 
						
							| 33 | 10 26 | syldan |  |-  ( ( ph /\ n e. NN ) -> ( C ` n ) : X --> RR ) | 
						
							| 34 |  | eqid |  |-  X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) | 
						
							| 35 | 12 32 14 33 34 | vonn0hoi |  |-  ( ( ph /\ n e. NN ) -> ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) ) | 
						
							| 36 | 14 | ffvelcdmda |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR ) | 
						
							| 37 | 10 36 | syldanl |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR ) | 
						
							| 38 | 33 | ffvelcdmda |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) e. RR ) | 
						
							| 39 |  | volico |  |-  ( ( ( A ` k ) e. RR /\ ( ( C ` n ) ` k ) e. RR ) -> ( vol ` ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) = if ( ( A ` k ) < ( ( C ` n ) ` k ) , ( ( ( C ` n ) ` k ) - ( A ` k ) ) , 0 ) ) | 
						
							| 40 | 37 38 39 | syl2anc |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) = if ( ( A ` k ) < ( ( C ` n ) ` k ) , ( ( ( C ` n ) ` k ) - ( A ` k ) ) , 0 ) ) | 
						
							| 41 | 10 16 | syldanl |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR ) | 
						
							| 42 | 5 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) <_ ( B ` k ) ) | 
						
							| 43 |  | nnrp |  |-  ( n e. NN -> n e. RR+ ) | 
						
							| 44 | 43 | rpreccld |  |-  ( n e. NN -> ( 1 / n ) e. RR+ ) | 
						
							| 45 | 44 | ad2antlr |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR+ ) | 
						
							| 46 | 41 45 | ltaddrpd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) < ( ( B ` k ) + ( 1 / n ) ) ) | 
						
							| 47 | 19 | elexd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / n ) ) e. _V ) | 
						
							| 48 | 24 47 | fvmpt2d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) = ( ( B ` k ) + ( 1 / n ) ) ) | 
						
							| 49 | 10 48 | syldanl |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) = ( ( B ` k ) + ( 1 / n ) ) ) | 
						
							| 50 | 46 49 | breqtrrd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) < ( ( C ` n ) ` k ) ) | 
						
							| 51 | 37 41 38 42 50 | lelttrd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) < ( ( C ` n ) ` k ) ) | 
						
							| 52 | 51 | iftrued |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> if ( ( A ` k ) < ( ( C ` n ) ` k ) , ( ( ( C ` n ) ` k ) - ( A ` k ) ) , 0 ) = ( ( ( C ` n ) ` k ) - ( A ` k ) ) ) | 
						
							| 53 | 40 52 | eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) = ( ( ( C ` n ) ` k ) - ( A ` k ) ) ) | 
						
							| 54 | 53 | prodeq2dv |  |-  ( ( ph /\ n e. NN ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) = prod_ k e. X ( ( ( C ` n ) ` k ) - ( A ` k ) ) ) | 
						
							| 55 | 31 35 54 | 3eqtrd |  |-  ( ( ph /\ n e. NN ) -> ( ( voln ` X ) ` ( D ` n ) ) = prod_ k e. X ( ( ( C ` n ) ` k ) - ( A ` k ) ) ) | 
						
							| 56 | 48 | oveq1d |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` n ) ` k ) - ( A ` k ) ) = ( ( ( B ` k ) + ( 1 / n ) ) - ( A ` k ) ) ) | 
						
							| 57 | 16 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. CC ) | 
						
							| 58 | 18 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. CC ) | 
						
							| 59 | 36 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. CC ) | 
						
							| 60 | 57 58 59 | addsubd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( B ` k ) + ( 1 / n ) ) - ( A ` k ) ) = ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) | 
						
							| 61 | 56 60 | eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` n ) ` k ) - ( A ` k ) ) = ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) | 
						
							| 62 | 61 | prodeq2dv |  |-  ( ( ph /\ n e. NN ) -> prod_ k e. X ( ( ( C ` n ) ` k ) - ( A ` k ) ) = prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) | 
						
							| 63 | 55 62 | eqtrd |  |-  ( ( ph /\ n e. NN ) -> ( ( voln ` X ) ` ( D ` n ) ) = prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) | 
						
							| 64 | 63 | mpteq2dva |  |-  ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) ) | 
						
							| 65 | 9 64 | eqtrd |  |-  ( ph -> S = ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) ) | 
						
							| 66 |  | nfv |  |-  F/ k ph | 
						
							| 67 | 2 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) | 
						
							| 68 | 15 67 | resubcld |  |-  ( ( ph /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. RR ) | 
						
							| 69 | 68 | recnd |  |-  ( ( ph /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. CC ) | 
						
							| 70 |  | eqid |  |-  ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) = ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) | 
						
							| 71 | 66 1 69 70 | fprodaddrecnncnv |  |-  ( ph -> ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) | 
						
							| 72 | 65 71 | eqbrtrd |  |-  ( ph -> S ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |