| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonicclem1.x |
|- ( ph -> X e. Fin ) |
| 2 |
|
vonicclem1.a |
|- ( ph -> A : X --> RR ) |
| 3 |
|
vonicclem1.b |
|- ( ph -> B : X --> RR ) |
| 4 |
|
vonicclem1.u |
|- ( ph -> X =/= (/) ) |
| 5 |
|
vonicclem1.t |
|- ( ( ph /\ k e. X ) -> ( A ` k ) <_ ( B ` k ) ) |
| 6 |
|
vonicclem1.c |
|- C = ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) |
| 7 |
|
vonicclem1.d |
|- D = ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) |
| 8 |
|
vonicclem1.s |
|- S = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) |
| 9 |
8
|
a1i |
|- ( ph -> S = ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) ) |
| 10 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
| 11 |
7
|
a1i |
|- ( ph -> D = ( n e. NN |-> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) ) |
| 12 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. Fin ) |
| 13 |
|
eqid |
|- dom ( voln ` X ) = dom ( voln ` X ) |
| 14 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> A : X --> RR ) |
| 15 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( B ` k ) e. RR ) |
| 16 |
15
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR ) |
| 17 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
| 18 |
17
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR ) |
| 19 |
16 18
|
readdcld |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / n ) ) e. RR ) |
| 20 |
19
|
fmpttd |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) : X --> RR ) |
| 21 |
6
|
a1i |
|- ( ph -> C = ( n e. NN |-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) ) |
| 22 |
1
|
mptexd |
|- ( ph -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) e. _V ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) e. _V ) |
| 24 |
21 23
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) = ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) ) |
| 25 |
24
|
feq1d |
|- ( ( ph /\ n e. NN ) -> ( ( C ` n ) : X --> RR <-> ( k e. X |-> ( ( B ` k ) + ( 1 / n ) ) ) : X --> RR ) ) |
| 26 |
20 25
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) : X --> RR ) |
| 27 |
12 13 14 26
|
hoimbl |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) e. dom ( voln ` X ) ) |
| 28 |
27
|
elexd |
|- ( ( ph /\ n e. NN ) -> X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) e. _V ) |
| 29 |
11 28
|
fvmpt2d |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) |
| 30 |
10 29
|
syldan |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) |
| 31 |
30
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( ( voln ` X ) ` ( D ` n ) ) = ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) ) |
| 32 |
4
|
adantr |
|- ( ( ph /\ n e. NN ) -> X =/= (/) ) |
| 33 |
10 26
|
syldan |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) : X --> RR ) |
| 34 |
|
eqid |
|- X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) = X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) |
| 35 |
12 32 14 33 34
|
vonn0hoi |
|- ( ( ph /\ n e. NN ) -> ( ( voln ` X ) ` X_ k e. X ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) ) |
| 36 |
14
|
ffvelcdmda |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR ) |
| 37 |
10 36
|
syldanl |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. RR ) |
| 38 |
33
|
ffvelcdmda |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) e. RR ) |
| 39 |
|
volico |
|- ( ( ( A ` k ) e. RR /\ ( ( C ` n ) ` k ) e. RR ) -> ( vol ` ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) = if ( ( A ` k ) < ( ( C ` n ) ` k ) , ( ( ( C ` n ) ` k ) - ( A ` k ) ) , 0 ) ) |
| 40 |
37 38 39
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) = if ( ( A ` k ) < ( ( C ` n ) ` k ) , ( ( ( C ` n ) ` k ) - ( A ` k ) ) , 0 ) ) |
| 41 |
10 16
|
syldanl |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. RR ) |
| 42 |
5
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) <_ ( B ` k ) ) |
| 43 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
| 44 |
43
|
rpreccld |
|- ( n e. NN -> ( 1 / n ) e. RR+ ) |
| 45 |
44
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. RR+ ) |
| 46 |
41 45
|
ltaddrpd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) < ( ( B ` k ) + ( 1 / n ) ) ) |
| 47 |
19
|
elexd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( B ` k ) + ( 1 / n ) ) e. _V ) |
| 48 |
24 47
|
fvmpt2d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) = ( ( B ` k ) + ( 1 / n ) ) ) |
| 49 |
10 48
|
syldanl |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( C ` n ) ` k ) = ( ( B ` k ) + ( 1 / n ) ) ) |
| 50 |
46 49
|
breqtrrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) < ( ( C ` n ) ` k ) ) |
| 51 |
37 41 38 42 50
|
lelttrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) < ( ( C ` n ) ` k ) ) |
| 52 |
51
|
iftrued |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> if ( ( A ` k ) < ( ( C ` n ) ` k ) , ( ( ( C ` n ) ` k ) - ( A ` k ) ) , 0 ) = ( ( ( C ` n ) ` k ) - ( A ` k ) ) ) |
| 53 |
40 52
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( vol ` ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) = ( ( ( C ` n ) ` k ) - ( A ` k ) ) ) |
| 54 |
53
|
prodeq2dv |
|- ( ( ph /\ n e. NN ) -> prod_ k e. X ( vol ` ( ( A ` k ) [,) ( ( C ` n ) ` k ) ) ) = prod_ k e. X ( ( ( C ` n ) ` k ) - ( A ` k ) ) ) |
| 55 |
31 35 54
|
3eqtrd |
|- ( ( ph /\ n e. NN ) -> ( ( voln ` X ) ` ( D ` n ) ) = prod_ k e. X ( ( ( C ` n ) ` k ) - ( A ` k ) ) ) |
| 56 |
48
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` n ) ` k ) - ( A ` k ) ) = ( ( ( B ` k ) + ( 1 / n ) ) - ( A ` k ) ) ) |
| 57 |
16
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( B ` k ) e. CC ) |
| 58 |
18
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( 1 / n ) e. CC ) |
| 59 |
36
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( A ` k ) e. CC ) |
| 60 |
57 58 59
|
addsubd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( B ` k ) + ( 1 / n ) ) - ( A ` k ) ) = ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) |
| 61 |
56 60
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. X ) -> ( ( ( C ` n ) ` k ) - ( A ` k ) ) = ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) |
| 62 |
61
|
prodeq2dv |
|- ( ( ph /\ n e. NN ) -> prod_ k e. X ( ( ( C ` n ) ` k ) - ( A ` k ) ) = prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) |
| 63 |
55 62
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( ( voln ` X ) ` ( D ` n ) ) = prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) |
| 64 |
63
|
mpteq2dva |
|- ( ph -> ( n e. NN |-> ( ( voln ` X ) ` ( D ` n ) ) ) = ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) ) |
| 65 |
9 64
|
eqtrd |
|- ( ph -> S = ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) ) |
| 66 |
|
nfv |
|- F/ k ph |
| 67 |
2
|
ffvelcdmda |
|- ( ( ph /\ k e. X ) -> ( A ` k ) e. RR ) |
| 68 |
15 67
|
resubcld |
|- ( ( ph /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. RR ) |
| 69 |
68
|
recnd |
|- ( ( ph /\ k e. X ) -> ( ( B ` k ) - ( A ` k ) ) e. CC ) |
| 70 |
|
eqid |
|- ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) = ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) |
| 71 |
66 1 69 70
|
fprodaddrecnncnv |
|- ( ph -> ( n e. NN |-> prod_ k e. X ( ( ( B ` k ) - ( A ` k ) ) + ( 1 / n ) ) ) ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |
| 72 |
65 71
|
eqbrtrd |
|- ( ph -> S ~~> prod_ k e. X ( ( B ` k ) - ( A ` k ) ) ) |