Step |
Hyp |
Ref |
Expression |
1 |
|
vonicclem1.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
vonicclem1.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
3 |
|
vonicclem1.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
4 |
|
vonicclem1.u |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
5 |
|
vonicclem1.t |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) |
6 |
|
vonicclem1.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
7 |
|
vonicclem1.d |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
8 |
|
vonicclem1.s |
⊢ 𝑆 = ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
11 |
7
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) ) |
12 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ Fin ) |
13 |
|
eqid |
⊢ dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 : 𝑋 ⟶ ℝ ) |
15 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
16 |
15
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
17 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
18 |
17
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
19 |
16 18
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ∈ ℝ ) |
20 |
19
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ ) |
21 |
6
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) ) |
22 |
1
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ∈ V ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ∈ V ) |
24 |
21 23
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
25 |
24
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ↔ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ ) ) |
26 |
20 25
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ) |
27 |
12 13 14 26
|
hoimbl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) ) |
28 |
27
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ∈ V ) |
29 |
11 28
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
30 |
10 29
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
31 |
30
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) = ( ( voln ‘ 𝑋 ) ‘ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) ) |
32 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ≠ ∅ ) |
33 |
10 26
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ) |
34 |
|
eqid |
⊢ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) |
35 |
12 32 14 33 34
|
vonn0hoi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( voln ‘ 𝑋 ) ‘ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) ) |
36 |
14
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
37 |
10 36
|
syldanl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
38 |
33
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ∈ ℝ ) |
39 |
|
volico |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ ∧ ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ∈ ℝ ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) = if ( ( 𝐴 ‘ 𝑘 ) < ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) , ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) ) |
40 |
37 38 39
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) = if ( ( 𝐴 ‘ 𝑘 ) < ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) , ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) ) |
41 |
10 16
|
syldanl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
42 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) |
43 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
44 |
43
|
rpreccld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ+ ) |
45 |
44
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
46 |
41 45
|
ltaddrpd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) < ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
47 |
19
|
elexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ∈ V ) |
48 |
24 47
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
49 |
10 48
|
syldanl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
50 |
46 49
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) < ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) |
51 |
37 41 38 42 50
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) < ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) |
52 |
51
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → if ( ( 𝐴 ‘ 𝑘 ) < ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) , ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) , 0 ) = ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
53 |
40 52
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) = ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
54 |
53
|
prodeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) = ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
55 |
31 35 54
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) = ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
56 |
48
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) = ( ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) − ( 𝐴 ‘ 𝑘 ) ) ) |
57 |
16
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℂ ) |
58 |
18
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℂ ) |
59 |
36
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
60 |
57 58 59
|
addsubd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) − ( 𝐴 ‘ 𝑘 ) ) = ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) + ( 1 / 𝑛 ) ) ) |
61 |
56 60
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) = ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) + ( 1 / 𝑛 ) ) ) |
62 |
61
|
prodeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) + ( 1 / 𝑛 ) ) ) |
63 |
55 62
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) = ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) + ( 1 / 𝑛 ) ) ) |
64 |
63
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) + ( 1 / 𝑛 ) ) ) ) |
65 |
9 64
|
eqtrd |
⊢ ( 𝜑 → 𝑆 = ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) + ( 1 / 𝑛 ) ) ) ) |
66 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
67 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
68 |
15 67
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) |
69 |
68
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
70 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) + ( 1 / 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) + ( 1 / 𝑛 ) ) ) |
71 |
66 1 69 70
|
fprodaddrecnncnv |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) + ( 1 / 𝑛 ) ) ) ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
72 |
65 71
|
eqbrtrd |
⊢ ( 𝜑 → 𝑆 ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |