| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonicclem1.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | vonicclem1.a | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 3 |  | vonicclem1.b | ⊢ ( 𝜑  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 4 |  | vonicclem1.u | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 5 |  | vonicclem1.t | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 6 |  | vonicclem1.c | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 7 |  | vonicclem1.d | ⊢ 𝐷  =  ( 𝑛  ∈  ℕ  ↦  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 8 |  | vonicclem1.s | ⊢ 𝑆  =  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  𝑆  =  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 11 | 7 | a1i | ⊢ ( 𝜑  →  𝐷  =  ( 𝑛  ∈  ℕ  ↦  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) ) | 
						
							| 12 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑋  ∈  Fin ) | 
						
							| 13 |  | eqid | ⊢ dom  ( voln ‘ 𝑋 )  =  dom  ( voln ‘ 𝑋 ) | 
						
							| 14 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 15 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 16 | 15 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 17 |  | nnrecre | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 18 | 17 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 19 | 16 18 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 20 | 19 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) : 𝑋 ⟶ ℝ ) | 
						
							| 21 | 6 | a1i | ⊢ ( 𝜑  →  𝐶  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 22 | 1 | mptexd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) )  ∈  V ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) )  ∈  V ) | 
						
							| 24 | 21 23 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐶 ‘ 𝑛 )  =  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 25 | 24 | feq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ  ↔  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) : 𝑋 ⟶ ℝ ) ) | 
						
							| 26 | 20 25 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ) | 
						
							| 27 | 12 13 14 26 | hoimbl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) )  ∈  dom  ( voln ‘ 𝑋 ) ) | 
						
							| 28 | 27 | elexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) )  ∈  V ) | 
						
							| 29 | 11 28 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 30 | 10 29 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) )  =  ( ( voln ‘ 𝑋 ) ‘ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) ) | 
						
							| 32 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑋  ≠  ∅ ) | 
						
							| 33 | 10 26 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ) | 
						
							| 34 |  | eqid | ⊢ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) | 
						
							| 35 | 12 32 14 33 34 | vonn0hoi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( voln ‘ 𝑋 ) ‘ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) ) | 
						
							| 36 | 14 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 37 | 10 36 | syldanl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 38 | 33 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 39 |  | volico | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ  ∧  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  ∈  ℝ )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) )  =  if ( ( 𝐴 ‘ 𝑘 )  <  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ,  ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ,  0 ) ) | 
						
							| 40 | 37 38 39 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) )  =  if ( ( 𝐴 ‘ 𝑘 )  <  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ,  ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ,  0 ) ) | 
						
							| 41 | 10 16 | syldanl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 42 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 43 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 44 | 43 | rpreccld | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 45 | 44 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 46 | 41 45 | ltaddrpd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  <  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 47 | 19 | elexd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) )  ∈  V ) | 
						
							| 48 | 24 47 | fvmpt2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  =  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 49 | 10 48 | syldanl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  =  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 50 | 46 49 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  <  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) | 
						
							| 51 | 37 41 38 42 50 | lelttrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  <  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) | 
						
							| 52 | 51 | iftrued | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  if ( ( 𝐴 ‘ 𝑘 )  <  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ,  ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ,  0 )  =  ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 53 | 40 52 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) )  =  ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 54 | 53 | prodeq2dv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) )  =  ∏ 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 55 | 31 35 54 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) )  =  ∏ 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 56 | 48 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  =  ( ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 57 | 16 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 58 | 18 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  𝑛 )  ∈  ℂ ) | 
						
							| 59 | 36 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 60 | 57 58 59 | addsubd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) )  −  ( 𝐴 ‘ 𝑘 ) )  =  ( ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 61 | 56 60 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  =  ( ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 62 | 61 | prodeq2dv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∏ 𝑘  ∈  𝑋 ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  =  ∏ 𝑘  ∈  𝑋 ( ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 63 | 55 62 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) )  =  ∏ 𝑘  ∈  𝑋 ( ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 64 | 63 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ∏ 𝑘  ∈  𝑋 ( ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 65 | 9 64 | eqtrd | ⊢ ( 𝜑  →  𝑆  =  ( 𝑛  ∈  ℕ  ↦  ∏ 𝑘  ∈  𝑋 ( ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 66 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 67 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 68 | 15 67 | resubcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 69 | 68 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 70 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ∏ 𝑘  ∈  𝑋 ( ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  +  ( 1  /  𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ∏ 𝑘  ∈  𝑋 ( ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 71 | 66 1 69 70 | fprodaddrecnncnv | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ∏ 𝑘  ∈  𝑋 ( ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) )  +  ( 1  /  𝑛 ) ) )  ⇝  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 72 | 65 71 | eqbrtrd | ⊢ ( 𝜑  →  𝑆  ⇝  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) |