| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonicclem2.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | vonicclem2.a | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 3 |  | vonicclem2.b | ⊢ ( 𝜑  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 4 |  | vonicclem2.n | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 5 |  | vonicclem2.t | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 6 |  | vonicclem2.i | ⊢ 𝐼  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 7 |  | vonicclem2.c | ⊢ 𝐶  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 8 |  | vonicclem2.d | ⊢ 𝐷  =  ( 𝑛  ∈  ℕ  ↦  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 10 | 1 | vonmea | ⊢ ( 𝜑  →  ( voln ‘ 𝑋 )  ∈  Meas ) | 
						
							| 11 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 12 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 13 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑋  ∈  Fin ) | 
						
							| 14 |  | eqid | ⊢ dom  ( voln ‘ 𝑋 )  =  dom  ( voln ‘ 𝑋 ) | 
						
							| 15 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 16 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 17 | 16 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 18 |  | nnrecre | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 19 | 18 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 20 | 17 19 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 21 | 20 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) : 𝑋 ⟶ ℝ ) | 
						
							| 22 | 7 | a1i | ⊢ ( 𝜑  →  𝐶  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) ) | 
						
							| 23 | 1 | mptexd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) )  ∈  V ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) )  ∈  V ) | 
						
							| 25 | 22 24 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐶 ‘ 𝑛 )  =  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 26 | 25 | feq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ  ↔  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) : 𝑋 ⟶ ℝ ) ) | 
						
							| 27 | 21 26 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ) | 
						
							| 28 | 13 14 15 27 | hoimbl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) )  ∈  dom  ( voln ‘ 𝑋 ) ) | 
						
							| 29 | 28 8 | fmptd | ⊢ ( 𝜑  →  𝐷 : ℕ ⟶ dom  ( voln ‘ 𝑋 ) ) | 
						
							| 30 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑛  ∈  ℕ ) | 
						
							| 31 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 32 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 33 | 31 32 | sselid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 34 | 33 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 35 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) )  ∈  V ) | 
						
							| 36 | 25 35 | fvmpt2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  =  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 37 | 36 20 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 38 | 37 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 39 | 15 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 40 | 39 | leidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 41 |  | 1red | ⊢ ( 𝑛  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 42 |  | nnre | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ ) | 
						
							| 43 | 42 41 | readdcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℝ ) | 
						
							| 44 |  | peano2nn | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 45 |  | nnne0 | ⊢ ( ( 𝑛  +  1 )  ∈  ℕ  →  ( 𝑛  +  1 )  ≠  0 ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ≠  0 ) | 
						
							| 47 | 41 43 46 | redivcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 48 | 47 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  ( 𝑛  +  1 ) )  ∈  ℝ ) | 
						
							| 49 | 42 | ltp1d | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  <  ( 𝑛  +  1 ) ) | 
						
							| 50 |  | nnrp | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ+ ) | 
						
							| 51 | 44 | nnrpd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℝ+ ) | 
						
							| 52 | 50 51 | ltrecd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  <  ( 𝑛  +  1 )  ↔  ( 1  /  ( 𝑛  +  1 ) )  <  ( 1  /  𝑛 ) ) ) | 
						
							| 53 | 49 52 | mpbid | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  ( 𝑛  +  1 ) )  <  ( 1  /  𝑛 ) ) | 
						
							| 54 | 47 18 53 | ltled | ⊢ ( 𝑛  ∈  ℕ  →  ( 1  /  ( 𝑛  +  1 ) )  ≤  ( 1  /  𝑛 ) ) | 
						
							| 55 | 54 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( 1  /  ( 𝑛  +  1 ) )  ≤  ( 1  /  𝑛 ) ) | 
						
							| 56 | 48 19 17 55 | leadd2dd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) )  ≤  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 57 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 1  /  𝑛 )  =  ( 1  /  𝑚 ) ) | 
						
							| 58 | 57 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) )  =  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) ) | 
						
							| 59 | 58 | mpteq2dv | ⊢ ( 𝑛  =  𝑚  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) )  =  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) ) ) | 
						
							| 60 | 59 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) ) ) | 
						
							| 61 | 7 60 | eqtri | ⊢ 𝐶  =  ( 𝑚  ∈  ℕ  ↦  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) ) ) | 
						
							| 62 |  | oveq2 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 1  /  𝑚 )  =  ( 1  /  ( 𝑛  +  1 ) ) ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑚 ) )  =  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) ) ) | 
						
							| 64 | 63 | mpteq2dv | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑚 ) ) )  =  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 65 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 66 | 65 | peano2nnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 67 | 13 | mptexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) ) )  ∈  V ) | 
						
							| 68 | 61 64 66 67 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐶 ‘ ( 𝑛  +  1 ) )  =  ( 𝑘  ∈  𝑋  ↦  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 69 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) )  ∈  V ) | 
						
							| 70 | 68 69 | fvmpt2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 )  =  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) ) ) | 
						
							| 71 | 70 36 | breq12d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 )  ≤  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  ↔  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  ( 𝑛  +  1 ) ) )  ≤  ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 72 | 56 71 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 )  ≤  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) | 
						
							| 73 |  | icossico | ⊢ ( ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℝ*  ∧  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  ∈  ℝ* )  ∧  ( ( 𝐴 ‘ 𝑘 )  ≤  ( 𝐴 ‘ 𝑘 )  ∧  ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 )  ≤  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) )  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) )  ⊆  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 74 | 34 38 40 72 73 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) )  ⊆  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 75 | 30 74 | ixpssixp | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) )  ⊆  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 76 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐶 ‘ 𝑛 )  =  ( 𝐶 ‘ 𝑚 ) ) | 
						
							| 77 | 76 | fveq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) | 
						
							| 78 | 77 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ) | 
						
							| 79 | 78 | ixpeq2dv | ⊢ ( 𝑛  =  𝑚  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ) | 
						
							| 80 | 79 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ) | 
						
							| 81 | 8 80 | eqtri | ⊢ 𝐷  =  ( 𝑚  ∈  ℕ  ↦  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ) | 
						
							| 82 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 𝐶 ‘ 𝑚 )  =  ( 𝐶 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 83 | 82 | fveq1d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) ) ) | 
						
							| 85 | 84 | ixpeq2dv | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) ) ) | 
						
							| 86 |  | ovex | ⊢ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) )  ∈  V | 
						
							| 87 | 86 | rgenw | ⊢ ∀ 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) )  ∈  V | 
						
							| 88 |  | ixpexg | ⊢ ( ∀ 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) )  ∈  V  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) )  ∈  V ) | 
						
							| 89 | 87 88 | ax-mp | ⊢ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) )  ∈  V | 
						
							| 90 | 89 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) )  ∈  V ) | 
						
							| 91 | 81 85 66 90 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ ( 𝑛  +  1 ) )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) ) ) | 
						
							| 92 | 8 | a1i | ⊢ ( 𝜑  →  𝐷  =  ( 𝑛  ∈  ℕ  ↦  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) ) | 
						
							| 93 | 28 | elexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) )  ∈  V ) | 
						
							| 94 | 92 93 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) | 
						
							| 95 | 91 94 | sseq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐷 ‘ ( 𝑛  +  1 ) )  ⊆  ( 𝐷 ‘ 𝑛 )  ↔  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛  +  1 ) ) ‘ 𝑘 ) )  ⊆  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) ) | 
						
							| 96 | 75 95 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ ( 𝑛  +  1 ) )  ⊆  ( 𝐷 ‘ 𝑛 ) ) | 
						
							| 97 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 98 | 97 12 | eleqtri | ⊢ 1  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 99 | 98 | a1i | ⊢ ( 𝜑  →  1  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 100 |  | fveq2 | ⊢ ( 𝑛  =  1  →  ( 𝐶 ‘ 𝑛 )  =  ( 𝐶 ‘ 1 ) ) | 
						
							| 101 | 100 | fveq1d | ⊢ ( 𝑛  =  1  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  =  ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) | 
						
							| 102 | 101 | oveq2d | ⊢ ( 𝑛  =  1  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ) | 
						
							| 103 | 102 | ixpeq2dv | ⊢ ( 𝑛  =  1  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ) | 
						
							| 104 | 97 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ ) | 
						
							| 105 |  | ovex | ⊢ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) )  ∈  V | 
						
							| 106 | 105 | rgenw | ⊢ ∀ 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) )  ∈  V | 
						
							| 107 |  | ixpexg | ⊢ ( ∀ 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) )  ∈  V  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) )  ∈  V ) | 
						
							| 108 | 106 107 | ax-mp | ⊢ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) )  ∈  V | 
						
							| 109 | 108 | a1i | ⊢ ( 𝜑  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) )  ∈  V ) | 
						
							| 110 | 8 103 104 109 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐷 ‘ 1 )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ) | 
						
							| 111 | 110 | fveq2d | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 1 ) )  =  ( ( voln ‘ 𝑋 ) ‘ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ) ) | 
						
							| 112 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 113 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝜑 ) | 
						
							| 114 | 97 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  1  ∈  ℕ ) | 
						
							| 115 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  𝑘  ∈  𝑋 ) | 
						
							| 116 | 97 | elexi | ⊢ 1  ∈  V | 
						
							| 117 |  | eleq1 | ⊢ ( 𝑛  =  1  →  ( 𝑛  ∈  ℕ  ↔  1  ∈  ℕ ) ) | 
						
							| 118 | 117 | anbi2d | ⊢ ( 𝑛  =  1  →  ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ↔  ( 𝜑  ∧  1  ∈  ℕ ) ) ) | 
						
							| 119 | 118 | anbi1d | ⊢ ( 𝑛  =  1  →  ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  ↔  ( ( 𝜑  ∧  1  ∈  ℕ )  ∧  𝑘  ∈  𝑋 ) ) ) | 
						
							| 120 | 101 | eleq1d | ⊢ ( 𝑛  =  1  →  ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  ∈  ℝ  ↔  ( ( 𝐶 ‘ 1 ) ‘ 𝑘 )  ∈  ℝ ) ) | 
						
							| 121 | 119 120 | imbi12d | ⊢ ( 𝑛  =  1  →  ( ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 )  ∈  ℝ )  ↔  ( ( ( 𝜑  ∧  1  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ 1 ) ‘ 𝑘 )  ∈  ℝ ) ) ) | 
						
							| 122 | 116 121 37 | vtocl | ⊢ ( ( ( 𝜑  ∧  1  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ 1 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 123 | 113 114 115 122 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐶 ‘ 1 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 124 | 112 1 32 123 | vonhoire | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 125 | 111 124 | eqeltrd | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 1 ) )  ∈  ℝ ) | 
						
							| 126 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) | 
						
							| 127 | 9 10 11 12 29 96 99 125 126 | meaiininc | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  ⇝  ( ( voln ‘ 𝑋 ) ‘ ∩  𝑛  ∈  ℕ ( 𝐷 ‘ 𝑛 ) ) ) | 
						
							| 128 | 112 32 16 | iinhoiicc | ⊢ ( 𝜑  →  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 129 | 36 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 130 | 129 | ixpeq2dva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 131 | 94 130 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐷 ‘ 𝑛 )  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 132 | 131 | iineq2dv | ⊢ ( 𝜑  →  ∩  𝑛  ∈  ℕ ( 𝐷 ‘ 𝑛 )  =  ∩  𝑛  ∈  ℕ X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐵 ‘ 𝑘 )  +  ( 1  /  𝑛 ) ) ) ) | 
						
							| 133 | 6 | a1i | ⊢ ( 𝜑  →  𝐼  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) | 
						
							| 134 | 128 132 133 | 3eqtr4d | ⊢ ( 𝜑  →  ∩  𝑛  ∈  ℕ ( 𝐷 ‘ 𝑛 )  =  𝐼 ) | 
						
							| 135 | 134 | eqcomd | ⊢ ( 𝜑  →  𝐼  =  ∩  𝑛  ∈  ℕ ( 𝐷 ‘ 𝑛 ) ) | 
						
							| 136 | 135 | fveq2d | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( ( voln ‘ 𝑋 ) ‘ ∩  𝑛  ∈  ℕ ( 𝐷 ‘ 𝑛 ) ) ) | 
						
							| 137 | 136 | eqcomd | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ ∩  𝑛  ∈  ℕ ( 𝐷 ‘ 𝑛 ) )  =  ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ) | 
						
							| 138 | 127 137 | breqtrd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  ⇝  ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ) | 
						
							| 139 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑚  →  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) )  =  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) | 
						
							| 140 | 139 | cbvmptv | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) | 
						
							| 141 | 140 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) ) | 
						
							| 142 | 140 | eqcomi | ⊢ ( 𝑚  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) | 
						
							| 143 | 1 2 3 4 5 7 8 142 | vonicclem1 | ⊢ ( 𝜑  →  ( 𝑚  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) )  ⇝  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 144 | 141 143 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  ⇝  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 145 |  | climuni | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  ⇝  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  ∧  ( 𝑛  ∈  ℕ  ↦  ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) )  ⇝  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) )  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 146 | 138 144 145 | syl2anc | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ∏ 𝑘  ∈  𝑋 ( ( 𝐵 ‘ 𝑘 )  −  ( 𝐴 ‘ 𝑘 ) ) ) |