Metamath Proof Explorer


Theorem vonicclem2

Description: The n-dimensional Lebesgue measure of closed intervals. This is the second statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonicclem2.x ( 𝜑𝑋 ∈ Fin )
vonicclem2.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
vonicclem2.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
vonicclem2.n ( 𝜑𝑋 ≠ ∅ )
vonicclem2.t ( ( 𝜑𝑘𝑋 ) → ( 𝐴𝑘 ) ≤ ( 𝐵𝑘 ) )
vonicclem2.i 𝐼 = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐵𝑘 ) )
vonicclem2.c 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) )
vonicclem2.d 𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) )
Assertion vonicclem2 ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) )

Proof

Step Hyp Ref Expression
1 vonicclem2.x ( 𝜑𝑋 ∈ Fin )
2 vonicclem2.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
3 vonicclem2.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
4 vonicclem2.n ( 𝜑𝑋 ≠ ∅ )
5 vonicclem2.t ( ( 𝜑𝑘𝑋 ) → ( 𝐴𝑘 ) ≤ ( 𝐵𝑘 ) )
6 vonicclem2.i 𝐼 = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐵𝑘 ) )
7 vonicclem2.c 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) )
8 vonicclem2.d 𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) )
9 nfv 𝑛 𝜑
10 1 vonmea ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas )
11 1zzd ( 𝜑 → 1 ∈ ℤ )
12 nnuz ℕ = ( ℤ ‘ 1 )
13 1 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑋 ∈ Fin )
14 eqid dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 )
15 2 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝐴 : 𝑋 ⟶ ℝ )
16 3 ffvelrnda ( ( 𝜑𝑘𝑋 ) → ( 𝐵𝑘 ) ∈ ℝ )
17 16 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐵𝑘 ) ∈ ℝ )
18 nnrecre ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ )
19 18 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ )
20 17 19 readdcld ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ∈ ℝ )
21 20 fmpttd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ )
22 7 a1i ( 𝜑𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) ) )
23 1 mptexd ( 𝜑 → ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) ∈ V )
24 23 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) ∈ V )
25 22 24 fvmpt2d ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐶𝑛 ) = ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) )
26 25 feq1d ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐶𝑛 ) : 𝑋 ⟶ ℝ ↔ ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ ) )
27 21 26 mpbird ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐶𝑛 ) : 𝑋 ⟶ ℝ )
28 13 14 15 27 hoimbl ( ( 𝜑𝑛 ∈ ℕ ) → X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) )
29 28 8 fmptd ( 𝜑𝐷 : ℕ ⟶ dom ( voln ‘ 𝑋 ) )
30 nfv 𝑘 ( 𝜑𝑛 ∈ ℕ )
31 ressxr ℝ ⊆ ℝ*
32 2 ffvelrnda ( ( 𝜑𝑘𝑋 ) → ( 𝐴𝑘 ) ∈ ℝ )
33 31 32 sseldi ( ( 𝜑𝑘𝑋 ) → ( 𝐴𝑘 ) ∈ ℝ* )
34 33 adantlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐴𝑘 ) ∈ ℝ* )
35 ovexd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ∈ V )
36 25 35 fvmpt2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐶𝑛 ) ‘ 𝑘 ) = ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) )
37 36 20 eqeltrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐶𝑛 ) ‘ 𝑘 ) ∈ ℝ )
38 37 rexrd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐶𝑛 ) ‘ 𝑘 ) ∈ ℝ* )
39 15 ffvelrnda ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐴𝑘 ) ∈ ℝ )
40 39 leidd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 𝐴𝑘 ) ≤ ( 𝐴𝑘 ) )
41 1red ( 𝑛 ∈ ℕ → 1 ∈ ℝ )
42 nnre ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ )
43 42 41 readdcld ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ )
44 peano2nn ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ )
45 nnne0 ( ( 𝑛 + 1 ) ∈ ℕ → ( 𝑛 + 1 ) ≠ 0 )
46 44 45 syl ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ≠ 0 )
47 41 43 46 redivcld ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ )
48 47 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ )
49 42 ltp1d ( 𝑛 ∈ ℕ → 𝑛 < ( 𝑛 + 1 ) )
50 nnrp ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ )
51 44 nnrpd ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ+ )
52 50 51 ltrecd ( 𝑛 ∈ ℕ → ( 𝑛 < ( 𝑛 + 1 ) ↔ ( 1 / ( 𝑛 + 1 ) ) < ( 1 / 𝑛 ) ) )
53 49 52 mpbid ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) < ( 1 / 𝑛 ) )
54 47 18 53 ltled ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) ≤ ( 1 / 𝑛 ) )
55 54 ad2antlr ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( 1 / ( 𝑛 + 1 ) ) ≤ ( 1 / 𝑛 ) )
56 48 19 17 55 leadd2dd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐵𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ≤ ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) )
57 oveq2 ( 𝑛 = 𝑚 → ( 1 / 𝑛 ) = ( 1 / 𝑚 ) )
58 57 oveq2d ( 𝑛 = 𝑚 → ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) = ( ( 𝐵𝑘 ) + ( 1 / 𝑚 ) ) )
59 58 mpteq2dv ( 𝑛 = 𝑚 → ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) = ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / 𝑚 ) ) ) )
60 59 cbvmptv ( 𝑛 ∈ ℕ ↦ ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / 𝑚 ) ) ) )
61 7 60 eqtri 𝐶 = ( 𝑚 ∈ ℕ ↦ ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / 𝑚 ) ) ) )
62 oveq2 ( 𝑚 = ( 𝑛 + 1 ) → ( 1 / 𝑚 ) = ( 1 / ( 𝑛 + 1 ) ) )
63 62 oveq2d ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝐵𝑘 ) + ( 1 / 𝑚 ) ) = ( ( 𝐵𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) )
64 63 mpteq2dv ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / 𝑚 ) ) ) = ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) )
65 simpr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ )
66 65 peano2nnd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ )
67 13 mptexd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) ∈ V )
68 61 64 66 67 fvmptd3 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐶 ‘ ( 𝑛 + 1 ) ) = ( 𝑘𝑋 ↦ ( ( 𝐵𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) )
69 ovexd ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐵𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ∈ V )
70 68 69 fvmpt2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) = ( ( 𝐵𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) )
71 70 36 breq12d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶𝑛 ) ‘ 𝑘 ) ↔ ( ( 𝐵𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ≤ ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) )
72 56 71 mpbird ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶𝑛 ) ‘ 𝑘 ) )
73 icossico ( ( ( ( 𝐴𝑘 ) ∈ ℝ* ∧ ( ( 𝐶𝑛 ) ‘ 𝑘 ) ∈ ℝ* ) ∧ ( ( 𝐴𝑘 ) ≤ ( 𝐴𝑘 ) ∧ ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) ) → ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ⊆ ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) )
74 34 38 40 72 73 syl22anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ⊆ ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) )
75 30 74 ixpssixp ( ( 𝜑𝑛 ∈ ℕ ) → X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ⊆ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) )
76 fveq2 ( 𝑛 = 𝑚 → ( 𝐶𝑛 ) = ( 𝐶𝑚 ) )
77 76 fveq1d ( 𝑛 = 𝑚 → ( ( 𝐶𝑛 ) ‘ 𝑘 ) = ( ( 𝐶𝑚 ) ‘ 𝑘 ) )
78 77 oveq2d ( 𝑛 = 𝑚 → ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) = ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑚 ) ‘ 𝑘 ) ) )
79 78 ixpeq2dv ( 𝑛 = 𝑚X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑚 ) ‘ 𝑘 ) ) )
80 79 cbvmptv ( 𝑛 ∈ ℕ ↦ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) ) = ( 𝑚 ∈ ℕ ↦ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑚 ) ‘ 𝑘 ) ) )
81 8 80 eqtri 𝐷 = ( 𝑚 ∈ ℕ ↦ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑚 ) ‘ 𝑘 ) ) )
82 fveq2 ( 𝑚 = ( 𝑛 + 1 ) → ( 𝐶𝑚 ) = ( 𝐶 ‘ ( 𝑛 + 1 ) ) )
83 82 fveq1d ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝐶𝑚 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) )
84 83 oveq2d ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑚 ) ‘ 𝑘 ) ) = ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) )
85 84 ixpeq2dv ( 𝑚 = ( 𝑛 + 1 ) → X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑚 ) ‘ 𝑘 ) ) = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) )
86 ovex ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ∈ V
87 86 rgenw 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ∈ V
88 ixpexg ( ∀ 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ∈ V → X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ∈ V )
89 87 88 ax-mp X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ∈ V
90 89 a1i ( ( 𝜑𝑛 ∈ ℕ ) → X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ∈ V )
91 81 85 66 90 fvmptd3 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐷 ‘ ( 𝑛 + 1 ) ) = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) )
92 8 a1i ( 𝜑𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) ) )
93 28 elexd ( ( 𝜑𝑛 ∈ ℕ ) → X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) ∈ V )
94 92 93 fvmpt2d ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐷𝑛 ) = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) )
95 91 94 sseq12d ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ ( 𝑛 + 1 ) ) ⊆ ( 𝐷𝑛 ) ↔ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ⊆ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) ) )
96 75 95 mpbird ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐷 ‘ ( 𝑛 + 1 ) ) ⊆ ( 𝐷𝑛 ) )
97 1nn 1 ∈ ℕ
98 97 12 eleqtri 1 ∈ ( ℤ ‘ 1 )
99 98 a1i ( 𝜑 → 1 ∈ ( ℤ ‘ 1 ) )
100 fveq2 ( 𝑛 = 1 → ( 𝐶𝑛 ) = ( 𝐶 ‘ 1 ) )
101 100 fveq1d ( 𝑛 = 1 → ( ( 𝐶𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) )
102 101 oveq2d ( 𝑛 = 1 → ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) = ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) )
103 102 ixpeq2dv ( 𝑛 = 1 → X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) )
104 97 a1i ( 𝜑 → 1 ∈ ℕ )
105 ovex ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ∈ V
106 105 rgenw 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ∈ V
107 ixpexg ( ∀ 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ∈ V → X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ∈ V )
108 106 107 ax-mp X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ∈ V
109 108 a1i ( 𝜑X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ∈ V )
110 8 103 104 109 fvmptd3 ( 𝜑 → ( 𝐷 ‘ 1 ) = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) )
111 110 fveq2d ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 1 ) ) = ( ( voln ‘ 𝑋 ) ‘ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ) )
112 nfv 𝑘 𝜑
113 simpl ( ( 𝜑𝑘𝑋 ) → 𝜑 )
114 97 a1i ( ( 𝜑𝑘𝑋 ) → 1 ∈ ℕ )
115 simpr ( ( 𝜑𝑘𝑋 ) → 𝑘𝑋 )
116 97 elexi 1 ∈ V
117 eleq1 ( 𝑛 = 1 → ( 𝑛 ∈ ℕ ↔ 1 ∈ ℕ ) )
118 117 anbi2d ( 𝑛 = 1 → ( ( 𝜑𝑛 ∈ ℕ ) ↔ ( 𝜑 ∧ 1 ∈ ℕ ) ) )
119 118 anbi1d ( 𝑛 = 1 → ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) ↔ ( ( 𝜑 ∧ 1 ∈ ℕ ) ∧ 𝑘𝑋 ) ) )
120 101 eleq1d ( 𝑛 = 1 → ( ( ( 𝐶𝑛 ) ‘ 𝑘 ) ∈ ℝ ↔ ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ∈ ℝ ) )
121 119 120 imbi12d ( 𝑛 = 1 → ( ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐶𝑛 ) ‘ 𝑘 ) ∈ ℝ ) ↔ ( ( ( 𝜑 ∧ 1 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ∈ ℝ ) ) )
122 116 121 37 vtocl ( ( ( 𝜑 ∧ 1 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ∈ ℝ )
123 113 114 115 122 syl21anc ( ( 𝜑𝑘𝑋 ) → ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ∈ ℝ )
124 112 1 32 123 vonhoire ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ) ∈ ℝ )
125 111 124 eqeltrd ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 1 ) ) ∈ ℝ )
126 eqid ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) )
127 9 10 11 12 29 96 99 125 126 meaiininc ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ 𝑛 ∈ ℕ ( 𝐷𝑛 ) ) )
128 112 32 16 iinhoiicc ( 𝜑 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐵𝑘 ) ) )
129 36 oveq2d ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘𝑋 ) → ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) = ( ( 𝐴𝑘 ) [,) ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) )
130 129 ixpeq2dva ( ( 𝜑𝑛 ∈ ℕ ) → X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐶𝑛 ) ‘ 𝑘 ) ) = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) )
131 94 130 eqtrd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐷𝑛 ) = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) )
132 131 iineq2dv ( 𝜑 𝑛 ∈ ℕ ( 𝐷𝑛 ) = 𝑛 ∈ ℕ X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( ( 𝐵𝑘 ) + ( 1 / 𝑛 ) ) ) )
133 6 a1i ( 𝜑𝐼 = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,] ( 𝐵𝑘 ) ) )
134 128 132 133 3eqtr4d ( 𝜑 𝑛 ∈ ℕ ( 𝐷𝑛 ) = 𝐼 )
135 134 eqcomd ( 𝜑𝐼 = 𝑛 ∈ ℕ ( 𝐷𝑛 ) )
136 135 fveq2d ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln ‘ 𝑋 ) ‘ 𝑛 ∈ ℕ ( 𝐷𝑛 ) ) )
137 136 eqcomd ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝑛 ∈ ℕ ( 𝐷𝑛 ) ) = ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) )
138 127 137 breqtrd ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) )
139 2fveq3 ( 𝑛 = 𝑚 → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) = ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑚 ) ) )
140 139 cbvmptv ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑚 ) ) )
141 140 a1i ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑚 ) ) ) )
142 140 eqcomi ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑚 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) )
143 1 2 3 4 5 7 8 142 vonicclem1 ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑚 ) ) ) ⇝ ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) )
144 141 143 eqbrtrd ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) ⇝ ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) )
145 climuni ( ( ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷𝑛 ) ) ) ⇝ ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) )
146 138 144 145 syl2anc ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘𝑋 ( ( 𝐵𝑘 ) − ( 𝐴𝑘 ) ) )