Step |
Hyp |
Ref |
Expression |
1 |
|
vonicclem2.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
vonicclem2.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
3 |
|
vonicclem2.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
4 |
|
vonicclem2.n |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
5 |
|
vonicclem2.t |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐵 ‘ 𝑘 ) ) |
6 |
|
vonicclem2.i |
⊢ 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) |
7 |
|
vonicclem2.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
8 |
|
vonicclem2.d |
⊢ 𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
9 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
10 |
1
|
vonmea |
⊢ ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas ) |
11 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
12 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑋 ∈ Fin ) |
14 |
|
eqid |
⊢ dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 ) |
15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 : 𝑋 ⟶ ℝ ) |
16 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
17 |
16
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑘 ) ∈ ℝ ) |
18 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
19 |
18
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / 𝑛 ) ∈ ℝ ) |
20 |
17 19
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ∈ ℝ ) |
21 |
20
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ ) |
22 |
7
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) ) |
23 |
1
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ∈ V ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ∈ V ) |
25 |
22 24
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
26 |
25
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ↔ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) : 𝑋 ⟶ ℝ ) ) |
27 |
21 26
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) : 𝑋 ⟶ ℝ ) |
28 |
13 14 15 27
|
hoimbl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) ) |
29 |
28 8
|
fmptd |
⊢ ( 𝜑 → 𝐷 : ℕ ⟶ dom ( voln ‘ 𝑋 ) ) |
30 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑛 ∈ ℕ ) |
31 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
32 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
33 |
31 32
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ* ) |
34 |
33
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ* ) |
35 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ∈ V ) |
36 |
25 35
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
37 |
36 20
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ∈ ℝ ) |
38 |
37
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ∈ ℝ* ) |
39 |
15
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℝ ) |
40 |
39
|
leidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ) |
41 |
|
1red |
⊢ ( 𝑛 ∈ ℕ → 1 ∈ ℝ ) |
42 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
43 |
42 41
|
readdcld |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ ) |
44 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
45 |
|
nnne0 |
⊢ ( ( 𝑛 + 1 ) ∈ ℕ → ( 𝑛 + 1 ) ≠ 0 ) |
46 |
44 45
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ≠ 0 ) |
47 |
41 43 46
|
redivcld |
⊢ ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ ) |
48 |
47
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ ) |
49 |
42
|
ltp1d |
⊢ ( 𝑛 ∈ ℕ → 𝑛 < ( 𝑛 + 1 ) ) |
50 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
51 |
44
|
nnrpd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ+ ) |
52 |
50 51
|
ltrecd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 < ( 𝑛 + 1 ) ↔ ( 1 / ( 𝑛 + 1 ) ) < ( 1 / 𝑛 ) ) ) |
53 |
49 52
|
mpbid |
⊢ ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) < ( 1 / 𝑛 ) ) |
54 |
47 18 53
|
ltled |
⊢ ( 𝑛 ∈ ℕ → ( 1 / ( 𝑛 + 1 ) ) ≤ ( 1 / 𝑛 ) ) |
55 |
54
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( 1 / ( 𝑛 + 1 ) ) ≤ ( 1 / 𝑛 ) ) |
56 |
48 19 17 55
|
leadd2dd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ≤ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) |
57 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 / 𝑛 ) = ( 1 / 𝑚 ) ) |
58 |
57
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) = ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) |
59 |
58
|
mpteq2dv |
⊢ ( 𝑛 = 𝑚 → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) ) |
60 |
59
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) ) |
61 |
7 60
|
eqtri |
⊢ 𝐶 = ( 𝑚 ∈ ℕ ↦ ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) ) |
62 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 1 / 𝑚 ) = ( 1 / ( 𝑛 + 1 ) ) ) |
63 |
62
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) = ( ( 𝐵 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) |
64 |
63
|
mpteq2dv |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑚 ) ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) ) |
65 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
66 |
65
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
67 |
13
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) ∈ V ) |
68 |
61 64 66 67
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ ( 𝑛 + 1 ) ) = ( 𝑘 ∈ 𝑋 ↦ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) ) |
69 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐵 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ∈ V ) |
70 |
68 69
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) = ( ( 𝐵 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ) |
71 |
70 36
|
breq12d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ↔ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / ( 𝑛 + 1 ) ) ) ≤ ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
72 |
56 71
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) |
73 |
|
icossico |
⊢ ( ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℝ* ∧ ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ∈ ℝ* ) ∧ ( ( 𝐴 ‘ 𝑘 ) ≤ ( 𝐴 ‘ 𝑘 ) ∧ ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ≤ ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ⊆ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
74 |
34 38 40 72 73
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ⊆ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
75 |
30 74
|
ixpssixp |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
76 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 𝑚 ) ) |
77 |
76
|
fveq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) |
78 |
77
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ) |
79 |
78
|
ixpeq2dv |
⊢ ( 𝑛 = 𝑚 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ) |
80 |
79
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) = ( 𝑚 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ) |
81 |
8 80
|
eqtri |
⊢ 𝐷 = ( 𝑚 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) ) |
82 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝐶 ‘ 𝑚 ) = ( 𝐶 ‘ ( 𝑛 + 1 ) ) ) |
83 |
82
|
fveq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) |
84 |
83
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ) |
85 |
84
|
ixpeq2dv |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑚 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ) |
86 |
|
ovex |
⊢ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ∈ V |
87 |
86
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ∈ V |
88 |
|
ixpexg |
⊢ ( ∀ 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ∈ V → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ∈ V ) |
89 |
87 88
|
ax-mp |
⊢ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ∈ V |
90 |
89
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ∈ V ) |
91 |
81 85 66 90
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ ( 𝑛 + 1 ) ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ) |
92 |
8
|
a1i |
⊢ ( 𝜑 → 𝐷 = ( 𝑛 ∈ ℕ ↦ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) ) |
93 |
28
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ∈ V ) |
94 |
92 93
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) |
95 |
91 94
|
sseq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝐷 ‘ ( 𝑛 + 1 ) ) ⊆ ( 𝐷 ‘ 𝑛 ) ↔ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ ( 𝑛 + 1 ) ) ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) ) ) |
96 |
75 95
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ ( 𝑛 + 1 ) ) ⊆ ( 𝐷 ‘ 𝑛 ) ) |
97 |
|
1nn |
⊢ 1 ∈ ℕ |
98 |
97 12
|
eleqtri |
⊢ 1 ∈ ( ℤ≥ ‘ 1 ) |
99 |
98
|
a1i |
⊢ ( 𝜑 → 1 ∈ ( ℤ≥ ‘ 1 ) ) |
100 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 1 ) ) |
101 |
100
|
fveq1d |
⊢ ( 𝑛 = 1 → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) = ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) |
102 |
101
|
oveq2d |
⊢ ( 𝑛 = 1 → ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ) |
103 |
102
|
ixpeq2dv |
⊢ ( 𝑛 = 1 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ) |
104 |
97
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
105 |
|
ovex |
⊢ ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ∈ V |
106 |
105
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ∈ V |
107 |
|
ixpexg |
⊢ ( ∀ 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ∈ V → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ∈ V ) |
108 |
106 107
|
ax-mp |
⊢ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ∈ V |
109 |
108
|
a1i |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ∈ V ) |
110 |
8 103 104 109
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐷 ‘ 1 ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ) |
111 |
110
|
fveq2d |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 1 ) ) = ( ( voln ‘ 𝑋 ) ‘ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ) ) |
112 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
113 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝜑 ) |
114 |
97
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 1 ∈ ℕ ) |
115 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) |
116 |
97
|
elexi |
⊢ 1 ∈ V |
117 |
|
eleq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 ∈ ℕ ↔ 1 ∈ ℕ ) ) |
118 |
117
|
anbi2d |
⊢ ( 𝑛 = 1 → ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ↔ ( 𝜑 ∧ 1 ∈ ℕ ) ) ) |
119 |
118
|
anbi1d |
⊢ ( 𝑛 = 1 → ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ↔ ( ( 𝜑 ∧ 1 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) ) ) |
120 |
101
|
eleq1d |
⊢ ( 𝑛 = 1 → ( ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ∈ ℝ ↔ ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ∈ ℝ ) ) |
121 |
119 120
|
imbi12d |
⊢ ( 𝑛 = 1 → ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ∈ ℝ ) ↔ ( ( ( 𝜑 ∧ 1 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ∈ ℝ ) ) ) |
122 |
116 121 37
|
vtocl |
⊢ ( ( ( 𝜑 ∧ 1 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ∈ ℝ ) |
123 |
113 114 115 122
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ∈ ℝ ) |
124 |
112 1 32 123
|
vonhoire |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 1 ) ‘ 𝑘 ) ) ) ∈ ℝ ) |
125 |
111 124
|
eqeltrd |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 1 ) ) ∈ ℝ ) |
126 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) |
127 |
9 10 11 12 29 96 99 125 126
|
meaiininc |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ ∩ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) ) ) |
128 |
112 32 16
|
iinhoiicc |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) |
129 |
36
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
130 |
129
|
ixpeq2dva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐶 ‘ 𝑛 ) ‘ 𝑘 ) ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
131 |
94 130
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐷 ‘ 𝑛 ) = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
132 |
131
|
iineq2dv |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) = ∩ 𝑛 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( ( 𝐵 ‘ 𝑘 ) + ( 1 / 𝑛 ) ) ) ) |
133 |
6
|
a1i |
⊢ ( 𝜑 → 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,] ( 𝐵 ‘ 𝑘 ) ) ) |
134 |
128 132 133
|
3eqtr4d |
⊢ ( 𝜑 → ∩ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) = 𝐼 ) |
135 |
134
|
eqcomd |
⊢ ( 𝜑 → 𝐼 = ∩ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) ) |
136 |
135
|
fveq2d |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln ‘ 𝑋 ) ‘ ∩ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) ) ) |
137 |
136
|
eqcomd |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ ∩ 𝑛 ∈ ℕ ( 𝐷 ‘ 𝑛 ) ) = ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ) |
138 |
127 137
|
breqtrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ) |
139 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑚 → ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) = ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) |
140 |
139
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) |
141 |
140
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) ) |
142 |
140
|
eqcomi |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) |
143 |
1 2 3 4 5 7 8 142
|
vonicclem1 |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑚 ) ) ) ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
144 |
141 143
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
145 |
|
climuni |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) ∧ ( 𝑛 ∈ ℕ ↦ ( ( voln ‘ 𝑋 ) ‘ ( 𝐷 ‘ 𝑛 ) ) ) ⇝ ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |
146 |
138 144 145
|
syl2anc |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘 ∈ 𝑋 ( ( 𝐵 ‘ 𝑘 ) − ( 𝐴 ‘ 𝑘 ) ) ) |