Step |
Hyp |
Ref |
Expression |
1 |
|
meaiininc.f |
⊢ Ⅎ 𝑛 𝜑 |
2 |
|
meaiininc.m |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |
3 |
|
meaiininc.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
4 |
|
meaiininc.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
5 |
|
meaiininc.e |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ dom 𝑀 ) |
6 |
|
meaiininc.i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ ( 𝑛 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑛 ) ) |
7 |
|
meaiininc.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
8 |
|
meaiininc.r |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) ∈ ℝ ) |
9 |
|
meaiininc.s |
⊢ 𝑆 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
10 |
|
nfv |
⊢ Ⅎ 𝑛 𝑖 ∈ 𝑍 |
11 |
1 10
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) |
12 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑖 ) |
13 |
11 12
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑖 ) ) |
14 |
|
eleq1w |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍 ) ) |
15 |
14
|
anbi2d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ) ) |
16 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑖 → ( 𝐸 ‘ ( 𝑛 + 1 ) ) = ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑖 ) ) |
18 |
16 17
|
sseq12d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝐸 ‘ ( 𝑛 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑛 ) ↔ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑖 ) ) ) |
19 |
15 18
|
imbi12d |
⊢ ( 𝑛 = 𝑖 → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ ( 𝑛 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑛 ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑖 ) ) ) ) |
20 |
13 19 6
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑖 ) ) |
21 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑖 → ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ) |
22 |
21
|
cbvmptv |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) = ( 𝑖 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ) |
23 |
17
|
difeq2d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) = ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑖 ) ) ) |
24 |
23
|
cbvmptv |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑖 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑖 ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑚 = 𝑖 → ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) ‘ 𝑖 ) ) |
26 |
25
|
cbviunv |
⊢ ∪ 𝑚 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ∪ 𝑖 ∈ 𝑍 ( ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) ‘ 𝑖 ) |
27 |
2 3 4 5 20 7 8 22 24 26
|
meaiininclem |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) ⇝ ( 𝑀 ‘ ∩ 𝑖 ∈ 𝑍 ( 𝐸 ‘ 𝑖 ) ) ) |
28 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑚 → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) |
29 |
28
|
cbvmptv |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) |
30 |
9 29
|
eqtri |
⊢ 𝑆 = ( 𝑚 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) |
31 |
30
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( 𝑚 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) ) |
32 |
17
|
cbviinv |
⊢ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) = ∩ 𝑖 ∈ 𝑍 ( 𝐸 ‘ 𝑖 ) |
33 |
32
|
fveq2i |
⊢ ( 𝑀 ‘ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) = ( 𝑀 ‘ ∩ 𝑖 ∈ 𝑍 ( 𝐸 ‘ 𝑖 ) ) |
34 |
33
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ‘ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) = ( 𝑀 ‘ ∩ 𝑖 ∈ 𝑍 ( 𝐸 ‘ 𝑖 ) ) ) |
35 |
31 34
|
breq12d |
⊢ ( 𝜑 → ( 𝑆 ⇝ ( 𝑀 ‘ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ↔ ( 𝑚 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) ⇝ ( 𝑀 ‘ ∩ 𝑖 ∈ 𝑍 ( 𝐸 ‘ 𝑖 ) ) ) ) |
36 |
27 35
|
mpbird |
⊢ ( 𝜑 → 𝑆 ⇝ ( 𝑀 ‘ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |