| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meaiininclem.m |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |
| 2 |
|
meaiininclem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 3 |
|
meaiininclem.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
| 4 |
|
meaiininclem.e |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ dom 𝑀 ) |
| 5 |
|
meaiininclem.i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ ( 𝑛 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑛 ) ) |
| 6 |
|
meaiininclem.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 7 |
|
meaiininclem.r |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) ∈ ℝ ) |
| 8 |
|
meaiininclem.s |
⊢ 𝑆 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 9 |
|
meaiininclem.g |
⊢ 𝐺 = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 10 |
|
meaiininclem.f |
⊢ 𝐹 = ∪ 𝑛 ∈ 𝑍 ( 𝐺 ‘ 𝑛 ) |
| 11 |
|
uzss |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ℤ≥ ‘ 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
| 12 |
6 11
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
| 13 |
12 3
|
sseqtrrdi |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝑍 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝑍 ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 16 |
14 15
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑛 ∈ 𝑍 ) |
| 17 |
9
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) ) |
| 18 |
|
eqid |
⊢ dom 𝑀 = dom 𝑀 |
| 19 |
1 18
|
dmmeasal |
⊢ ( 𝜑 → dom 𝑀 ∈ SAlg ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → dom 𝑀 ∈ SAlg ) |
| 21 |
6 3
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐾 ∈ 𝑍 ) |
| 22 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → ( 𝐸 ‘ 𝐾 ) ∈ dom 𝑀 ) |
| 23 |
21 22
|
mpdan |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐾 ) ∈ dom 𝑀 ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝐾 ) ∈ dom 𝑀 ) |
| 25 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ∈ dom 𝑀 ) |
| 26 |
|
saldifcl2 |
⊢ ( ( dom 𝑀 ∈ SAlg ∧ ( 𝐸 ‘ 𝐾 ) ∈ dom 𝑀 ∧ ( 𝐸 ‘ 𝑛 ) ∈ dom 𝑀 ) → ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ∈ dom 𝑀 ) |
| 27 |
20 24 25 26
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ∈ dom 𝑀 ) |
| 28 |
27
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ∈ V ) |
| 29 |
17 28
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 30 |
16 29
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝐺 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 31 |
30
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) ) |
| 32 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑀 ∈ Meas ) |
| 33 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝐸 ‘ 𝐾 ) ∈ dom 𝑀 ) |
| 34 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) ∈ ℝ ) |
| 35 |
16 25
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝐸 ‘ 𝑛 ) ∈ dom 𝑀 ) |
| 36 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝐾 ..^ 𝑛 ) ) → 𝜑 ) |
| 37 |
36 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝐾 ..^ 𝑛 ) ) → ( ℤ≥ ‘ 𝐾 ) ⊆ 𝑍 ) |
| 38 |
|
elfzouz |
⊢ ( 𝑚 ∈ ( 𝐾 ..^ 𝑛 ) → 𝑚 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝐾 ..^ 𝑛 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 40 |
37 39
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝐾 ..^ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 41 |
|
eleq1w |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ∈ 𝑍 ↔ 𝑚 ∈ 𝑍 ) ) |
| 42 |
41
|
anbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ) ) |
| 43 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝐸 ‘ ( 𝑛 + 1 ) ) = ( 𝐸 ‘ ( 𝑚 + 1 ) ) ) |
| 44 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑚 ) ) |
| 45 |
43 44
|
sseq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐸 ‘ ( 𝑛 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑛 ) ↔ ( 𝐸 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑚 ) ) ) |
| 46 |
42 45
|
imbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ ( 𝑛 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑛 ) ) ↔ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐸 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑚 ) ) ) ) |
| 47 |
46 5
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐸 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑚 ) ) |
| 48 |
36 40 47
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝐾 ..^ 𝑛 ) ) → ( 𝐸 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑚 ) ) |
| 49 |
48
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) ∧ 𝑚 ∈ ( 𝐾 ..^ 𝑛 ) ) → ( 𝐸 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝐸 ‘ 𝑚 ) ) |
| 50 |
15 49
|
ssdec |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝐾 ) ) |
| 51 |
32 33 34 35 50
|
meadif |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
| 52 |
31 51
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
| 53 |
52
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) = ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
| 54 |
7
|
recnd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) ∈ ℂ ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) ∈ ℂ ) |
| 56 |
32 33 34 50 35
|
meassre |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ ) |
| 57 |
56
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℂ ) |
| 58 |
55 57
|
nncand |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 59 |
53 58
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) = ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 60 |
59
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 61 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 62 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝐾 ) = ( ℤ≥ ‘ 𝐾 ) |
| 63 |
6
|
eluzelzd |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 64 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ⊆ ( 𝐸 ‘ 𝐾 ) ) |
| 65 |
29 64
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝐾 ) ) |
| 66 |
16 65
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝐺 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝐾 ) ) |
| 67 |
27 9
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ dom 𝑀 ) |
| 68 |
67
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ∈ dom 𝑀 ) |
| 69 |
16 68
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ dom 𝑀 ) |
| 70 |
32 33 34 66 69
|
meassre |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ∈ ℝ ) |
| 71 |
70
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ∈ ℂ ) |
| 72 |
5
|
sscond |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ⊆ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ) |
| 73 |
44
|
difeq2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) = ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑚 ) ) ) |
| 74 |
73
|
cbvmptv |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑚 ) ) ) |
| 75 |
9 74
|
eqtri |
⊢ 𝐺 = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑚 ) ) ) |
| 76 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝐸 ‘ 𝑚 ) = ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) |
| 77 |
76
|
difeq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑚 ) ) = ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ) |
| 78 |
3
|
peano2uzs |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 79 |
78
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 80 |
|
fvex |
⊢ ( 𝐸 ‘ 𝐾 ) ∈ V |
| 81 |
80
|
difexi |
⊢ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ∈ V |
| 82 |
81
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ∈ V ) |
| 83 |
75 77 79 82
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑛 + 1 ) ) = ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ) |
| 84 |
29 83
|
sseq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐺 ‘ 𝑛 ) ⊆ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ↔ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ⊆ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 85 |
72 84
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ⊆ ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) |
| 86 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑀 ∈ Meas ) |
| 87 |
86 18 68 24 65
|
meassle |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) ) |
| 88 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) |
| 89 |
1 2 3 67 85 7 87 88
|
meaiuninc2 |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ⇝ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐺 ‘ 𝑛 ) ) ) |
| 90 |
|
eqid |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) |
| 91 |
3 88 21 90
|
climresmpt |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ⇝ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐺 ‘ 𝑛 ) ) ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ⇝ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 92 |
89 91
|
mpbird |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ⇝ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐺 ‘ 𝑛 ) ) ) |
| 93 |
10
|
eqcomi |
⊢ ∪ 𝑛 ∈ 𝑍 ( 𝐺 ‘ 𝑛 ) = 𝐹 |
| 94 |
93
|
fveq2i |
⊢ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐺 ‘ 𝑛 ) ) = ( 𝑀 ‘ 𝐹 ) |
| 95 |
94
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐺 ‘ 𝑛 ) ) = ( 𝑀 ‘ 𝐹 ) ) |
| 96 |
92 95
|
breqtrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ⇝ ( 𝑀 ‘ 𝐹 ) ) |
| 97 |
61 62 63 54 71 96
|
climsubc1mpt |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ⇝ ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ 𝐹 ) ) ) |
| 98 |
60 97
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ⇝ ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ 𝐹 ) ) ) |
| 99 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 100 |
|
eqid |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 101 |
3 99 21 100
|
climresmpt |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ⇝ ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ 𝐹 ) ) ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ⇝ ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ 𝐹 ) ) ) ) |
| 102 |
98 101
|
mpbid |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ⇝ ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ 𝐹 ) ) ) |
| 103 |
8
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
| 104 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ∪ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ) = ( 𝑀 ‘ ( 𝐹 ∪ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ) ) |
| 105 |
3
|
uzct |
⊢ 𝑍 ≼ ω |
| 106 |
105
|
a1i |
⊢ ( 𝜑 → 𝑍 ≼ ω ) |
| 107 |
19 106 68
|
saliuncl |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐺 ‘ 𝑛 ) ∈ dom 𝑀 ) |
| 108 |
10 107
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ dom 𝑀 ) |
| 109 |
|
saldifcl2 |
⊢ ( ( dom 𝑀 ∈ SAlg ∧ ( 𝐸 ‘ 𝐾 ) ∈ dom 𝑀 ∧ 𝐹 ∈ dom 𝑀 ) → ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ∈ dom 𝑀 ) |
| 110 |
19 23 108 109
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ∈ dom 𝑀 ) |
| 111 |
|
disjdif |
⊢ ( 𝐹 ∩ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) = ∅ |
| 112 |
111
|
a1i |
⊢ ( 𝜑 → ( 𝐹 ∩ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) = ∅ ) |
| 113 |
65
|
iunssd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐺 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝐾 ) ) |
| 114 |
10 113
|
eqsstrid |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝐸 ‘ 𝐾 ) ) |
| 115 |
1 23 7 114 108
|
meassre |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐹 ) ∈ ℝ ) |
| 116 |
|
difssd |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ⊆ ( 𝐸 ‘ 𝐾 ) ) |
| 117 |
1 23 7 116 110
|
meassre |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ∈ ℝ ) |
| 118 |
1 18 108 110 112 115 117
|
meadjunre |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ∪ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ) = ( ( 𝑀 ‘ 𝐹 ) + ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ) ) |
| 119 |
|
undif |
⊢ ( 𝐹 ⊆ ( 𝐸 ‘ 𝐾 ) ↔ ( 𝐹 ∪ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) = ( 𝐸 ‘ 𝐾 ) ) |
| 120 |
114 119
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ∪ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) = ( 𝐸 ‘ 𝐾 ) ) |
| 121 |
120
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ∪ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) ) |
| 122 |
104 118 121
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐹 ) + ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) ) |
| 123 |
115
|
recnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐹 ) ∈ ℂ ) |
| 124 |
117
|
recnd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ∈ ℂ ) |
| 125 |
54 123 124
|
subaddd |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ 𝐹 ) ) = ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ↔ ( ( 𝑀 ‘ 𝐹 ) + ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) ) ) |
| 126 |
122 125
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ 𝐹 ) ) = ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ) |
| 127 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) |
| 128 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ∧ 𝑛 ∈ 𝑍 ) ∧ ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → 𝑛 ∈ 𝑍 ) |
| 129 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) → 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ) |
| 130 |
129
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ∧ 𝑛 ∈ 𝑍 ) ∧ ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ) |
| 131 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ∧ 𝑛 ∈ 𝑍 ) ∧ ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) |
| 132 |
130 131
|
eldifd |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ∧ 𝑛 ∈ 𝑍 ) ∧ ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 133 |
|
rspe |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 134 |
128 132 133
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ∧ 𝑛 ∈ 𝑍 ) ∧ ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 135 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ↔ ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 136 |
134 135
|
sylibr |
⊢ ( ( ( 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ∧ 𝑛 ∈ 𝑍 ) ∧ ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 137 |
136
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 138 |
10
|
a1i |
⊢ ( 𝜑 → 𝐹 = ∪ 𝑛 ∈ 𝑍 ( 𝐺 ‘ 𝑛 ) ) |
| 139 |
29
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐺 ‘ 𝑛 ) = ∪ 𝑛 ∈ 𝑍 ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 140 |
138 139
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ∪ 𝑛 ∈ 𝑍 ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 141 |
140
|
eqcomd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) = 𝐹 ) |
| 142 |
141
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → ∪ 𝑛 ∈ 𝑍 ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) = 𝐹 ) |
| 143 |
137 142
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → 𝑥 ∈ 𝐹 ) |
| 144 |
|
elndif |
⊢ ( 𝑥 ∈ 𝐹 → ¬ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) |
| 145 |
143 144
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ∧ 𝑛 ∈ 𝑍 ) ∧ ¬ 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) → ¬ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) |
| 146 |
127 145
|
condan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) |
| 147 |
146
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) → ∀ 𝑛 ∈ 𝑍 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) |
| 148 |
|
vex |
⊢ 𝑥 ∈ V |
| 149 |
|
eliin |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝑍 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) ) |
| 150 |
148 149
|
ax-mp |
⊢ ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝑍 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) |
| 151 |
147 150
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
| 152 |
151
|
ssd |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ⊆ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
| 153 |
|
ssid |
⊢ ( 𝐸 ‘ 𝐾 ) ⊆ ( 𝐸 ‘ 𝐾 ) |
| 154 |
153
|
a1i |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝐾 ) ⊆ ( 𝐸 ‘ 𝐾 ) ) |
| 155 |
|
fveq2 |
⊢ ( 𝑛 = 𝐾 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝐾 ) ) |
| 156 |
155
|
sseq1d |
⊢ ( 𝑛 = 𝐾 → ( ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝐾 ) ↔ ( 𝐸 ‘ 𝐾 ) ⊆ ( 𝐸 ‘ 𝐾 ) ) ) |
| 157 |
156
|
rspcev |
⊢ ( ( 𝐾 ∈ 𝑍 ∧ ( 𝐸 ‘ 𝐾 ) ⊆ ( 𝐸 ‘ 𝐾 ) ) → ∃ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝐾 ) ) |
| 158 |
21 154 157
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝐾 ) ) |
| 159 |
|
iinss |
⊢ ( ∃ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝐾 ) → ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝐾 ) ) |
| 160 |
158 159
|
syl |
⊢ ( 𝜑 → ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝐾 ) ) |
| 161 |
160
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) → ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝐾 ) ) |
| 162 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
| 163 |
161 162
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) → 𝑥 ∈ ( 𝐸 ‘ 𝐾 ) ) |
| 164 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑥 |
| 165 |
|
nfii1 |
⊢ Ⅎ 𝑛 ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) |
| 166 |
164 165
|
nfel |
⊢ Ⅎ 𝑛 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) |
| 167 |
|
iinss2 |
⊢ ( 𝑛 ∈ 𝑍 → ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝑛 ) ) |
| 168 |
167
|
adantl |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ∧ 𝑛 ∈ 𝑍 ) → ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝑛 ) ) |
| 169 |
|
simpl |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
| 170 |
168 169
|
sseldd |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ∧ 𝑛 ∈ 𝑍 ) → 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) ) |
| 171 |
|
elndif |
⊢ ( 𝑥 ∈ ( 𝐸 ‘ 𝑛 ) → ¬ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 172 |
170 171
|
syl |
⊢ ( ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ∧ 𝑛 ∈ 𝑍 ) → ¬ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 173 |
172
|
ex |
⊢ ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) → ( 𝑛 ∈ 𝑍 → ¬ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) ) |
| 174 |
166 173
|
ralrimi |
⊢ ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝑍 ¬ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 175 |
|
ralnex |
⊢ ( ∀ 𝑛 ∈ 𝑍 ¬ 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ↔ ¬ ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 176 |
174 175
|
sylib |
⊢ ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) → ¬ ∃ 𝑛 ∈ 𝑍 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 177 |
176 135
|
sylnibr |
⊢ ( 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) → ¬ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 178 |
177
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) → ¬ 𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 179 |
140
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) → 𝐹 = ∪ 𝑛 ∈ 𝑍 ( ( 𝐸 ‘ 𝐾 ) ∖ ( 𝐸 ‘ 𝑛 ) ) ) |
| 180 |
178 179
|
neleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) → ¬ 𝑥 ∈ 𝐹 ) |
| 181 |
163 180
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) → 𝑥 ∈ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) |
| 182 |
152 181
|
eqelssd |
⊢ ( 𝜑 → ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) = ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
| 183 |
182
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 ) ∖ 𝐹 ) ) = ( 𝑀 ‘ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |
| 184 |
126 183
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) = ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ 𝐹 ) ) ) |
| 185 |
103 184
|
breq12d |
⊢ ( 𝜑 → ( 𝑆 ⇝ ( 𝑀 ‘ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ↔ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ⇝ ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) − ( 𝑀 ‘ 𝐹 ) ) ) ) |
| 186 |
102 185
|
mpbird |
⊢ ( 𝜑 → 𝑆 ⇝ ( 𝑀 ‘ ∩ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |