| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaiininclem.m | ⊢ ( 𝜑  →  𝑀  ∈  Meas ) | 
						
							| 2 |  | meaiininclem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | meaiininclem.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 4 |  | meaiininclem.e | ⊢ ( 𝜑  →  𝐸 : 𝑍 ⟶ dom  𝑀 ) | 
						
							| 5 |  | meaiininclem.i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ ( 𝑛  +  1 ) )  ⊆  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 6 |  | meaiininclem.k | ⊢ ( 𝜑  →  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 7 |  | meaiininclem.r | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  ∈  ℝ ) | 
						
							| 8 |  | meaiininclem.s | ⊢ 𝑆  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 9 |  | meaiininclem.g | ⊢ 𝐺  =  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 10 |  | meaiininclem.f | ⊢ 𝐹  =  ∪  𝑛  ∈  𝑍 ( 𝐺 ‘ 𝑛 ) | 
						
							| 11 |  | uzss | ⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( ℤ≥ ‘ 𝐾 )  ⊆  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 12 | 6 11 | syl | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝐾 )  ⊆  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 13 | 12 3 | sseqtrrdi | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝐾 )  ⊆  𝑍 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( ℤ≥ ‘ 𝐾 )  ⊆  𝑍 ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 16 | 14 15 | sseldd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 17 | 9 | a1i | ⊢ ( 𝜑  →  𝐺  =  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 18 |  | eqid | ⊢ dom  𝑀  =  dom  𝑀 | 
						
							| 19 | 1 18 | dmmeasal | ⊢ ( 𝜑  →  dom  𝑀  ∈  SAlg ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  dom  𝑀  ∈  SAlg ) | 
						
							| 21 | 6 3 | eleqtrrdi | ⊢ ( 𝜑  →  𝐾  ∈  𝑍 ) | 
						
							| 22 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝐾  ∈  𝑍 )  →  ( 𝐸 ‘ 𝐾 )  ∈  dom  𝑀 ) | 
						
							| 23 | 21 22 | mpdan | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝐾 )  ∈  dom  𝑀 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝐾 )  ∈  dom  𝑀 ) | 
						
							| 25 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ∈  dom  𝑀 ) | 
						
							| 26 |  | saldifcl2 | ⊢ ( ( dom  𝑀  ∈  SAlg  ∧  ( 𝐸 ‘ 𝐾 )  ∈  dom  𝑀  ∧  ( 𝐸 ‘ 𝑛 )  ∈  dom  𝑀 )  →  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) )  ∈  dom  𝑀 ) | 
						
							| 27 | 20 24 25 26 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) )  ∈  dom  𝑀 ) | 
						
							| 28 | 27 | elexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) )  ∈  V ) | 
						
							| 29 | 17 28 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑛 )  =  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 30 | 16 29 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝐺 ‘ 𝑛 )  =  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 32 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝑀  ∈  Meas ) | 
						
							| 33 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝐸 ‘ 𝐾 )  ∈  dom  𝑀 ) | 
						
							| 34 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  ∈  ℝ ) | 
						
							| 35 | 16 25 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝐸 ‘ 𝑛 )  ∈  dom  𝑀 ) | 
						
							| 36 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 𝐾 ..^ 𝑛 ) )  →  𝜑 ) | 
						
							| 37 | 36 13 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 𝐾 ..^ 𝑛 ) )  →  ( ℤ≥ ‘ 𝐾 )  ⊆  𝑍 ) | 
						
							| 38 |  | elfzouz | ⊢ ( 𝑚  ∈  ( 𝐾 ..^ 𝑛 )  →  𝑚  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 𝐾 ..^ 𝑛 ) )  →  𝑚  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 40 | 37 39 | sseldd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 𝐾 ..^ 𝑛 ) )  →  𝑚  ∈  𝑍 ) | 
						
							| 41 |  | eleq1w | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ∈  𝑍  ↔  𝑚  ∈  𝑍 ) ) | 
						
							| 42 | 41 | anbi2d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ↔  ( 𝜑  ∧  𝑚  ∈  𝑍 ) ) ) | 
						
							| 43 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐸 ‘ ( 𝑛  +  1 ) )  =  ( 𝐸 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 44 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐸 ‘ 𝑛 )  =  ( 𝐸 ‘ 𝑚 ) ) | 
						
							| 45 | 43 44 | sseq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐸 ‘ ( 𝑛  +  1 ) )  ⊆  ( 𝐸 ‘ 𝑛 )  ↔  ( 𝐸 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝐸 ‘ 𝑚 ) ) ) | 
						
							| 46 | 42 45 | imbi12d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ ( 𝑛  +  1 ) )  ⊆  ( 𝐸 ‘ 𝑛 ) )  ↔  ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝐸 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝐸 ‘ 𝑚 ) ) ) ) | 
						
							| 47 | 46 5 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝐸 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝐸 ‘ 𝑚 ) ) | 
						
							| 48 | 36 40 47 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 𝐾 ..^ 𝑛 ) )  →  ( 𝐸 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝐸 ‘ 𝑚 ) ) | 
						
							| 49 | 48 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  ∧  𝑚  ∈  ( 𝐾 ..^ 𝑛 ) )  →  ( 𝐸 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝐸 ‘ 𝑚 ) ) | 
						
							| 50 | 15 49 | ssdec | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 51 | 32 33 34 35 50 | meadif | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) )  =  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 52 | 31 51 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 54 | 7 | recnd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  ∈  ℂ ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  ∈  ℂ ) | 
						
							| 56 | 32 33 34 50 35 | meassre | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 57 | 56 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 58 | 55 57 | nncand | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  =  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 59 | 53 58 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  =  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 60 | 59 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 61 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 62 |  | eqid | ⊢ ( ℤ≥ ‘ 𝐾 )  =  ( ℤ≥ ‘ 𝐾 ) | 
						
							| 63 | 6 | eluzelzd | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) | 
						
							| 64 |  | difssd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) )  ⊆  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 65 | 29 64 | eqsstrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 66 | 16 65 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝐺 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 67 | 27 9 | fmptd | ⊢ ( 𝜑  →  𝐺 : 𝑍 ⟶ dom  𝑀 ) | 
						
							| 68 | 67 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑛 )  ∈  dom  𝑀 ) | 
						
							| 69 | 16 68 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝐺 ‘ 𝑛 )  ∈  dom  𝑀 ) | 
						
							| 70 | 32 33 34 66 69 | meassre | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 71 | 70 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) )  ∈  ℂ ) | 
						
							| 72 | 5 | sscond | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) )  ⊆  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 73 | 44 | difeq2d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) )  =  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑚 ) ) ) | 
						
							| 74 | 73 | cbvmptv | ⊢ ( 𝑛  ∈  𝑍  ↦  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑚 ) ) ) | 
						
							| 75 | 9 74 | eqtri | ⊢ 𝐺  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑚 ) ) ) | 
						
							| 76 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 𝐸 ‘ 𝑚 )  =  ( 𝐸 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 77 | 76 | difeq2d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑚 ) )  =  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 78 | 3 | peano2uzs | ⊢ ( 𝑛  ∈  𝑍  →  ( 𝑛  +  1 )  ∈  𝑍 ) | 
						
							| 79 | 78 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑛  +  1 )  ∈  𝑍 ) | 
						
							| 80 |  | fvex | ⊢ ( 𝐸 ‘ 𝐾 )  ∈  V | 
						
							| 81 | 80 | difexi | ⊢ ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ ( 𝑛  +  1 ) ) )  ∈  V | 
						
							| 82 | 81 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ ( 𝑛  +  1 ) ) )  ∈  V ) | 
						
							| 83 | 75 77 79 82 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐺 ‘ ( 𝑛  +  1 ) )  =  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 84 | 29 83 | sseq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐺 ‘ 𝑛 )  ⊆  ( 𝐺 ‘ ( 𝑛  +  1 ) )  ↔  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) )  ⊆  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 85 | 72 84 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑛 )  ⊆  ( 𝐺 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 86 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑀  ∈  Meas ) | 
						
							| 87 | 86 18 68 24 65 | meassle | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) ) | 
						
							| 88 |  | eqid | ⊢ ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 89 | 1 2 3 67 85 7 87 88 | meaiuninc2 | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) )  ⇝  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 90 |  | eqid | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 91 | 3 88 21 90 | climresmpt | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) )  ⇝  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐺 ‘ 𝑛 ) )  ↔  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) )  ⇝  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 92 | 89 91 | mpbird | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) )  ⇝  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 93 | 10 | eqcomi | ⊢ ∪  𝑛  ∈  𝑍 ( 𝐺 ‘ 𝑛 )  =  𝐹 | 
						
							| 94 | 93 | fveq2i | ⊢ ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐺 ‘ 𝑛 ) )  =  ( 𝑀 ‘ 𝐹 ) | 
						
							| 95 | 94 | a1i | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐺 ‘ 𝑛 ) )  =  ( 𝑀 ‘ 𝐹 ) ) | 
						
							| 96 | 92 95 | breqtrd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) )  ⇝  ( 𝑀 ‘ 𝐹 ) ) | 
						
							| 97 | 61 62 63 54 71 96 | climsubc1mpt | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ ( 𝐺 ‘ 𝑛 ) ) ) )  ⇝  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ 𝐹 ) ) ) | 
						
							| 98 | 60 97 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) )  ⇝  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ 𝐹 ) ) ) | 
						
							| 99 |  | eqid | ⊢ ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 100 |  | eqid | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 101 | 3 99 21 100 | climresmpt | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) )  ⇝  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ 𝐹 ) )  ↔  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) )  ⇝  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ 𝐹 ) ) ) ) | 
						
							| 102 | 98 101 | mpbid | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) )  ⇝  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ 𝐹 ) ) ) | 
						
							| 103 | 8 | a1i | ⊢ ( 𝜑  →  𝑆  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 104 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐹  ∪  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) ) )  =  ( 𝑀 ‘ ( 𝐹  ∪  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) ) ) ) | 
						
							| 105 | 3 | uzct | ⊢ 𝑍  ≼  ω | 
						
							| 106 | 105 | a1i | ⊢ ( 𝜑  →  𝑍  ≼  ω ) | 
						
							| 107 | 19 106 68 | saliuncl | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ( 𝐺 ‘ 𝑛 )  ∈  dom  𝑀 ) | 
						
							| 108 | 10 107 | eqeltrid | ⊢ ( 𝜑  →  𝐹  ∈  dom  𝑀 ) | 
						
							| 109 |  | saldifcl2 | ⊢ ( ( dom  𝑀  ∈  SAlg  ∧  ( 𝐸 ‘ 𝐾 )  ∈  dom  𝑀  ∧  𝐹  ∈  dom  𝑀 )  →  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 )  ∈  dom  𝑀 ) | 
						
							| 110 | 19 23 108 109 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 )  ∈  dom  𝑀 ) | 
						
							| 111 |  | disjdif | ⊢ ( 𝐹  ∩  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  =  ∅ | 
						
							| 112 | 111 | a1i | ⊢ ( 𝜑  →  ( 𝐹  ∩  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  =  ∅ ) | 
						
							| 113 | 65 | iunssd | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ( 𝐺 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 114 | 10 113 | eqsstrid | ⊢ ( 𝜑  →  𝐹  ⊆  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 115 | 1 23 7 114 108 | meassre | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐹 )  ∈  ℝ ) | 
						
							| 116 |  | difssd | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 )  ⊆  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 117 | 1 23 7 116 110 | meassre | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  ∈  ℝ ) | 
						
							| 118 | 1 18 108 110 112 115 117 | meadjunre | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐹  ∪  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) ) )  =  ( ( 𝑀 ‘ 𝐹 )  +  ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) ) ) ) | 
						
							| 119 |  | undif | ⊢ ( 𝐹  ⊆  ( 𝐸 ‘ 𝐾 )  ↔  ( 𝐹  ∪  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  =  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 120 | 114 119 | sylib | ⊢ ( 𝜑  →  ( 𝐹  ∪  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  =  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 121 | 120 | fveq2d | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐹  ∪  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) ) )  =  ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) ) | 
						
							| 122 | 104 118 121 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐹 )  +  ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) ) )  =  ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) ) | 
						
							| 123 | 115 | recnd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐹 )  ∈  ℂ ) | 
						
							| 124 | 117 | recnd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  ∈  ℂ ) | 
						
							| 125 | 54 123 124 | subaddd | ⊢ ( 𝜑  →  ( ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ 𝐹 ) )  =  ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  ↔  ( ( 𝑀 ‘ 𝐹 )  +  ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) ) )  =  ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) ) ) ) | 
						
							| 126 | 122 125 | mpbird | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ 𝐹 ) )  =  ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) ) ) | 
						
							| 127 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  ∧  𝑛  ∈  𝑍 )  ∧  ¬  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) ) | 
						
							| 128 |  | simplr | ⊢ ( ( ( 𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 )  ∧  𝑛  ∈  𝑍 )  ∧  ¬  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 129 |  | eldifi | ⊢ ( 𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 )  →  𝑥  ∈  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 130 | 129 | ad2antrr | ⊢ ( ( ( 𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 )  ∧  𝑛  ∈  𝑍 )  ∧  ¬  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →  𝑥  ∈  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 131 |  | simpr | ⊢ ( ( ( 𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 )  ∧  𝑛  ∈  𝑍 )  ∧  ¬  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →  ¬  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 132 | 130 131 | eldifd | ⊢ ( ( ( 𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 )  ∧  𝑛  ∈  𝑍 )  ∧  ¬  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 133 |  | rspe | ⊢ ( ( 𝑛  ∈  𝑍  ∧  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) )  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 134 | 128 132 133 | syl2anc | ⊢ ( ( ( 𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 )  ∧  𝑛  ∈  𝑍 )  ∧  ¬  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 135 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑛  ∈  𝑍 ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) )  ↔  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 136 | 134 135 | sylibr | ⊢ ( ( ( 𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 )  ∧  𝑛  ∈  𝑍 )  ∧  ¬  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 137 | 136 | adantlll | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  ∧  𝑛  ∈  𝑍 )  ∧  ¬  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →  𝑥  ∈  ∪  𝑛  ∈  𝑍 ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 138 | 10 | a1i | ⊢ ( 𝜑  →  𝐹  =  ∪  𝑛  ∈  𝑍 ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 139 | 29 | iuneq2dv | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ( 𝐺 ‘ 𝑛 )  =  ∪  𝑛  ∈  𝑍 ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 140 | 138 139 | eqtrd | ⊢ ( 𝜑  →  𝐹  =  ∪  𝑛  ∈  𝑍 ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 141 | 140 | eqcomd | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) )  =  𝐹 ) | 
						
							| 142 | 141 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  ∧  𝑛  ∈  𝑍 )  ∧  ¬  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →  ∪  𝑛  ∈  𝑍 ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) )  =  𝐹 ) | 
						
							| 143 | 137 142 | eleqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  ∧  𝑛  ∈  𝑍 )  ∧  ¬  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →  𝑥  ∈  𝐹 ) | 
						
							| 144 |  | elndif | ⊢ ( 𝑥  ∈  𝐹  →  ¬  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) ) | 
						
							| 145 | 143 144 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  ∧  𝑛  ∈  𝑍 )  ∧  ¬  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) )  →  ¬  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) ) | 
						
							| 146 | 127 145 | condan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 147 | 146 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  →  ∀ 𝑛  ∈  𝑍 𝑥  ∈  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 148 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 149 |  | eliin | ⊢ ( 𝑥  ∈  V  →  ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝑍 𝑥  ∈  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 150 | 148 149 | ax-mp | ⊢ ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝑍 𝑥  ∈  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 151 | 147 150 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 152 | 151 | ssd | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 )  ⊆  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 153 |  | ssid | ⊢ ( 𝐸 ‘ 𝐾 )  ⊆  ( 𝐸 ‘ 𝐾 ) | 
						
							| 154 | 153 | a1i | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝐾 )  ⊆  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 155 |  | fveq2 | ⊢ ( 𝑛  =  𝐾  →  ( 𝐸 ‘ 𝑛 )  =  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 156 | 155 | sseq1d | ⊢ ( 𝑛  =  𝐾  →  ( ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ 𝐾 )  ↔  ( 𝐸 ‘ 𝐾 )  ⊆  ( 𝐸 ‘ 𝐾 ) ) ) | 
						
							| 157 | 156 | rspcev | ⊢ ( ( 𝐾  ∈  𝑍  ∧  ( 𝐸 ‘ 𝐾 )  ⊆  ( 𝐸 ‘ 𝐾 ) )  →  ∃ 𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 158 | 21 154 157 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 159 |  | iinss | ⊢ ( ∃ 𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ 𝐾 )  →  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 160 | 158 159 | syl | ⊢ ( 𝜑  →  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 161 | 160 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  →  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 162 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 163 | 161 162 | sseldd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  →  𝑥  ∈  ( 𝐸 ‘ 𝐾 ) ) | 
						
							| 164 |  | nfcv | ⊢ Ⅎ 𝑛 𝑥 | 
						
							| 165 |  | nfii1 | ⊢ Ⅎ 𝑛 ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) | 
						
							| 166 | 164 165 | nfel | ⊢ Ⅎ 𝑛 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) | 
						
							| 167 |  | iinss2 | ⊢ ( 𝑛  ∈  𝑍  →  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 168 | 167 | adantl | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∧  𝑛  ∈  𝑍 )  →  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 169 |  | simpl | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 170 | 168 169 | sseldd | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∧  𝑛  ∈  𝑍 )  →  𝑥  ∈  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 171 |  | elndif | ⊢ ( 𝑥  ∈  ( 𝐸 ‘ 𝑛 )  →  ¬  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 172 | 170 171 | syl | ⊢ ( ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∧  𝑛  ∈  𝑍 )  →  ¬  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 173 | 172 | ex | ⊢ ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  →  ( 𝑛  ∈  𝑍  →  ¬  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 174 | 166 173 | ralrimi | ⊢ ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝑍 ¬  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 175 |  | ralnex | ⊢ ( ∀ 𝑛  ∈  𝑍 ¬  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) )  ↔  ¬  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 176 | 174 175 | sylib | ⊢ ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  →  ¬  ∃ 𝑛  ∈  𝑍 𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 177 | 176 135 | sylnibr | ⊢ ( 𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  →  ¬  𝑥  ∈  ∪  𝑛  ∈  𝑍 ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 178 | 177 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  →  ¬  𝑥  ∈  ∪  𝑛  ∈  𝑍 ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 179 | 140 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  →  𝐹  =  ∪  𝑛  ∈  𝑍 ( ( 𝐸 ‘ 𝐾 )  ∖  ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 180 | 178 179 | neleqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  →  ¬  𝑥  ∈  𝐹 ) | 
						
							| 181 | 163 180 | eldifd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  →  𝑥  ∈  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) ) | 
						
							| 182 | 152 181 | eqelssd | ⊢ ( 𝜑  →  ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 )  =  ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 183 | 182 | fveq2d | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( ( 𝐸 ‘ 𝐾 )  ∖  𝐹 ) )  =  ( 𝑀 ‘ ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 184 | 126 183 | eqtr2d | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  =  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ 𝐹 ) ) ) | 
						
							| 185 | 103 184 | breq12d | ⊢ ( 𝜑  →  ( 𝑆  ⇝  ( 𝑀 ‘ ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  ↔  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) )  ⇝  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝐾 ) )  −  ( 𝑀 ‘ 𝐹 ) ) ) ) | 
						
							| 186 | 102 185 | mpbird | ⊢ ( 𝜑  →  𝑆  ⇝  ( 𝑀 ‘ ∩  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |