| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaiininclem.m |  |-  ( ph -> M e. Meas ) | 
						
							| 2 |  | meaiininclem.n |  |-  ( ph -> N e. ZZ ) | 
						
							| 3 |  | meaiininclem.z |  |-  Z = ( ZZ>= ` N ) | 
						
							| 4 |  | meaiininclem.e |  |-  ( ph -> E : Z --> dom M ) | 
						
							| 5 |  | meaiininclem.i |  |-  ( ( ph /\ n e. Z ) -> ( E ` ( n + 1 ) ) C_ ( E ` n ) ) | 
						
							| 6 |  | meaiininclem.k |  |-  ( ph -> K e. ( ZZ>= ` N ) ) | 
						
							| 7 |  | meaiininclem.r |  |-  ( ph -> ( M ` ( E ` K ) ) e. RR ) | 
						
							| 8 |  | meaiininclem.s |  |-  S = ( n e. Z |-> ( M ` ( E ` n ) ) ) | 
						
							| 9 |  | meaiininclem.g |  |-  G = ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 10 |  | meaiininclem.f |  |-  F = U_ n e. Z ( G ` n ) | 
						
							| 11 |  | uzss |  |-  ( K e. ( ZZ>= ` N ) -> ( ZZ>= ` K ) C_ ( ZZ>= ` N ) ) | 
						
							| 12 | 6 11 | syl |  |-  ( ph -> ( ZZ>= ` K ) C_ ( ZZ>= ` N ) ) | 
						
							| 13 | 12 3 | sseqtrrdi |  |-  ( ph -> ( ZZ>= ` K ) C_ Z ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( ZZ>= ` K ) C_ Z ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> n e. ( ZZ>= ` K ) ) | 
						
							| 16 | 14 15 | sseldd |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> n e. Z ) | 
						
							| 17 | 9 | a1i |  |-  ( ph -> G = ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) ) | 
						
							| 18 |  | eqid |  |-  dom M = dom M | 
						
							| 19 | 1 18 | dmmeasal |  |-  ( ph -> dom M e. SAlg ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ n e. Z ) -> dom M e. SAlg ) | 
						
							| 21 | 6 3 | eleqtrrdi |  |-  ( ph -> K e. Z ) | 
						
							| 22 | 4 | ffvelcdmda |  |-  ( ( ph /\ K e. Z ) -> ( E ` K ) e. dom M ) | 
						
							| 23 | 21 22 | mpdan |  |-  ( ph -> ( E ` K ) e. dom M ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ n e. Z ) -> ( E ` K ) e. dom M ) | 
						
							| 25 | 4 | ffvelcdmda |  |-  ( ( ph /\ n e. Z ) -> ( E ` n ) e. dom M ) | 
						
							| 26 |  | saldifcl2 |  |-  ( ( dom M e. SAlg /\ ( E ` K ) e. dom M /\ ( E ` n ) e. dom M ) -> ( ( E ` K ) \ ( E ` n ) ) e. dom M ) | 
						
							| 27 | 20 24 25 26 | syl3anc |  |-  ( ( ph /\ n e. Z ) -> ( ( E ` K ) \ ( E ` n ) ) e. dom M ) | 
						
							| 28 | 27 | elexd |  |-  ( ( ph /\ n e. Z ) -> ( ( E ` K ) \ ( E ` n ) ) e. _V ) | 
						
							| 29 | 17 28 | fvmpt2d |  |-  ( ( ph /\ n e. Z ) -> ( G ` n ) = ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 30 | 16 29 | syldan |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( G ` n ) = ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 31 | 30 | fveq2d |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( G ` n ) ) = ( M ` ( ( E ` K ) \ ( E ` n ) ) ) ) | 
						
							| 32 | 1 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> M e. Meas ) | 
						
							| 33 | 23 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( E ` K ) e. dom M ) | 
						
							| 34 | 7 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( E ` K ) ) e. RR ) | 
						
							| 35 | 16 25 | syldan |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( E ` n ) e. dom M ) | 
						
							| 36 |  | simpl |  |-  ( ( ph /\ m e. ( K ..^ n ) ) -> ph ) | 
						
							| 37 | 36 13 | syl |  |-  ( ( ph /\ m e. ( K ..^ n ) ) -> ( ZZ>= ` K ) C_ Z ) | 
						
							| 38 |  | elfzouz |  |-  ( m e. ( K ..^ n ) -> m e. ( ZZ>= ` K ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( ph /\ m e. ( K ..^ n ) ) -> m e. ( ZZ>= ` K ) ) | 
						
							| 40 | 37 39 | sseldd |  |-  ( ( ph /\ m e. ( K ..^ n ) ) -> m e. Z ) | 
						
							| 41 |  | eleq1w |  |-  ( n = m -> ( n e. Z <-> m e. Z ) ) | 
						
							| 42 | 41 | anbi2d |  |-  ( n = m -> ( ( ph /\ n e. Z ) <-> ( ph /\ m e. Z ) ) ) | 
						
							| 43 |  | fvoveq1 |  |-  ( n = m -> ( E ` ( n + 1 ) ) = ( E ` ( m + 1 ) ) ) | 
						
							| 44 |  | fveq2 |  |-  ( n = m -> ( E ` n ) = ( E ` m ) ) | 
						
							| 45 | 43 44 | sseq12d |  |-  ( n = m -> ( ( E ` ( n + 1 ) ) C_ ( E ` n ) <-> ( E ` ( m + 1 ) ) C_ ( E ` m ) ) ) | 
						
							| 46 | 42 45 | imbi12d |  |-  ( n = m -> ( ( ( ph /\ n e. Z ) -> ( E ` ( n + 1 ) ) C_ ( E ` n ) ) <-> ( ( ph /\ m e. Z ) -> ( E ` ( m + 1 ) ) C_ ( E ` m ) ) ) ) | 
						
							| 47 | 46 5 | chvarvv |  |-  ( ( ph /\ m e. Z ) -> ( E ` ( m + 1 ) ) C_ ( E ` m ) ) | 
						
							| 48 | 36 40 47 | syl2anc |  |-  ( ( ph /\ m e. ( K ..^ n ) ) -> ( E ` ( m + 1 ) ) C_ ( E ` m ) ) | 
						
							| 49 | 48 | adantlr |  |-  ( ( ( ph /\ n e. ( ZZ>= ` K ) ) /\ m e. ( K ..^ n ) ) -> ( E ` ( m + 1 ) ) C_ ( E ` m ) ) | 
						
							| 50 | 15 49 | ssdec |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( E ` n ) C_ ( E ` K ) ) | 
						
							| 51 | 32 33 34 35 50 | meadif |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( ( E ` K ) \ ( E ` n ) ) ) = ( ( M ` ( E ` K ) ) - ( M ` ( E ` n ) ) ) ) | 
						
							| 52 | 31 51 | eqtrd |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( G ` n ) ) = ( ( M ` ( E ` K ) ) - ( M ` ( E ` n ) ) ) ) | 
						
							| 53 | 52 | oveq2d |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( ( M ` ( E ` K ) ) - ( M ` ( G ` n ) ) ) = ( ( M ` ( E ` K ) ) - ( ( M ` ( E ` K ) ) - ( M ` ( E ` n ) ) ) ) ) | 
						
							| 54 | 7 | recnd |  |-  ( ph -> ( M ` ( E ` K ) ) e. CC ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( E ` K ) ) e. CC ) | 
						
							| 56 | 32 33 34 50 35 | meassre |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( E ` n ) ) e. RR ) | 
						
							| 57 | 56 | recnd |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( E ` n ) ) e. CC ) | 
						
							| 58 | 55 57 | nncand |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( ( M ` ( E ` K ) ) - ( ( M ` ( E ` K ) ) - ( M ` ( E ` n ) ) ) ) = ( M ` ( E ` n ) ) ) | 
						
							| 59 | 53 58 | eqtr2d |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( E ` n ) ) = ( ( M ` ( E ` K ) ) - ( M ` ( G ` n ) ) ) ) | 
						
							| 60 | 59 | mpteq2dva |  |-  ( ph -> ( n e. ( ZZ>= ` K ) |-> ( M ` ( E ` n ) ) ) = ( n e. ( ZZ>= ` K ) |-> ( ( M ` ( E ` K ) ) - ( M ` ( G ` n ) ) ) ) ) | 
						
							| 61 |  | nfv |  |-  F/ n ph | 
						
							| 62 |  | eqid |  |-  ( ZZ>= ` K ) = ( ZZ>= ` K ) | 
						
							| 63 | 6 | eluzelzd |  |-  ( ph -> K e. ZZ ) | 
						
							| 64 |  | difssd |  |-  ( ( ph /\ n e. Z ) -> ( ( E ` K ) \ ( E ` n ) ) C_ ( E ` K ) ) | 
						
							| 65 | 29 64 | eqsstrd |  |-  ( ( ph /\ n e. Z ) -> ( G ` n ) C_ ( E ` K ) ) | 
						
							| 66 | 16 65 | syldan |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( G ` n ) C_ ( E ` K ) ) | 
						
							| 67 | 27 9 | fmptd |  |-  ( ph -> G : Z --> dom M ) | 
						
							| 68 | 67 | ffvelcdmda |  |-  ( ( ph /\ n e. Z ) -> ( G ` n ) e. dom M ) | 
						
							| 69 | 16 68 | syldan |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( G ` n ) e. dom M ) | 
						
							| 70 | 32 33 34 66 69 | meassre |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( G ` n ) ) e. RR ) | 
						
							| 71 | 70 | recnd |  |-  ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( G ` n ) ) e. CC ) | 
						
							| 72 | 5 | sscond |  |-  ( ( ph /\ n e. Z ) -> ( ( E ` K ) \ ( E ` n ) ) C_ ( ( E ` K ) \ ( E ` ( n + 1 ) ) ) ) | 
						
							| 73 | 44 | difeq2d |  |-  ( n = m -> ( ( E ` K ) \ ( E ` n ) ) = ( ( E ` K ) \ ( E ` m ) ) ) | 
						
							| 74 | 73 | cbvmptv |  |-  ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) = ( m e. Z |-> ( ( E ` K ) \ ( E ` m ) ) ) | 
						
							| 75 | 9 74 | eqtri |  |-  G = ( m e. Z |-> ( ( E ` K ) \ ( E ` m ) ) ) | 
						
							| 76 |  | fveq2 |  |-  ( m = ( n + 1 ) -> ( E ` m ) = ( E ` ( n + 1 ) ) ) | 
						
							| 77 | 76 | difeq2d |  |-  ( m = ( n + 1 ) -> ( ( E ` K ) \ ( E ` m ) ) = ( ( E ` K ) \ ( E ` ( n + 1 ) ) ) ) | 
						
							| 78 | 3 | peano2uzs |  |-  ( n e. Z -> ( n + 1 ) e. Z ) | 
						
							| 79 | 78 | adantl |  |-  ( ( ph /\ n e. Z ) -> ( n + 1 ) e. Z ) | 
						
							| 80 |  | fvex |  |-  ( E ` K ) e. _V | 
						
							| 81 | 80 | difexi |  |-  ( ( E ` K ) \ ( E ` ( n + 1 ) ) ) e. _V | 
						
							| 82 | 81 | a1i |  |-  ( ( ph /\ n e. Z ) -> ( ( E ` K ) \ ( E ` ( n + 1 ) ) ) e. _V ) | 
						
							| 83 | 75 77 79 82 | fvmptd3 |  |-  ( ( ph /\ n e. Z ) -> ( G ` ( n + 1 ) ) = ( ( E ` K ) \ ( E ` ( n + 1 ) ) ) ) | 
						
							| 84 | 29 83 | sseq12d |  |-  ( ( ph /\ n e. Z ) -> ( ( G ` n ) C_ ( G ` ( n + 1 ) ) <-> ( ( E ` K ) \ ( E ` n ) ) C_ ( ( E ` K ) \ ( E ` ( n + 1 ) ) ) ) ) | 
						
							| 85 | 72 84 | mpbird |  |-  ( ( ph /\ n e. Z ) -> ( G ` n ) C_ ( G ` ( n + 1 ) ) ) | 
						
							| 86 | 1 | adantr |  |-  ( ( ph /\ n e. Z ) -> M e. Meas ) | 
						
							| 87 | 86 18 68 24 65 | meassle |  |-  ( ( ph /\ n e. Z ) -> ( M ` ( G ` n ) ) <_ ( M ` ( E ` K ) ) ) | 
						
							| 88 |  | eqid |  |-  ( n e. Z |-> ( M ` ( G ` n ) ) ) = ( n e. Z |-> ( M ` ( G ` n ) ) ) | 
						
							| 89 | 1 2 3 67 85 7 87 88 | meaiuninc2 |  |-  ( ph -> ( n e. Z |-> ( M ` ( G ` n ) ) ) ~~> ( M ` U_ n e. Z ( G ` n ) ) ) | 
						
							| 90 |  | eqid |  |-  ( n e. ( ZZ>= ` K ) |-> ( M ` ( G ` n ) ) ) = ( n e. ( ZZ>= ` K ) |-> ( M ` ( G ` n ) ) ) | 
						
							| 91 | 3 88 21 90 | climresmpt |  |-  ( ph -> ( ( n e. ( ZZ>= ` K ) |-> ( M ` ( G ` n ) ) ) ~~> ( M ` U_ n e. Z ( G ` n ) ) <-> ( n e. Z |-> ( M ` ( G ` n ) ) ) ~~> ( M ` U_ n e. Z ( G ` n ) ) ) ) | 
						
							| 92 | 89 91 | mpbird |  |-  ( ph -> ( n e. ( ZZ>= ` K ) |-> ( M ` ( G ` n ) ) ) ~~> ( M ` U_ n e. Z ( G ` n ) ) ) | 
						
							| 93 | 10 | eqcomi |  |-  U_ n e. Z ( G ` n ) = F | 
						
							| 94 | 93 | fveq2i |  |-  ( M ` U_ n e. Z ( G ` n ) ) = ( M ` F ) | 
						
							| 95 | 94 | a1i |  |-  ( ph -> ( M ` U_ n e. Z ( G ` n ) ) = ( M ` F ) ) | 
						
							| 96 | 92 95 | breqtrd |  |-  ( ph -> ( n e. ( ZZ>= ` K ) |-> ( M ` ( G ` n ) ) ) ~~> ( M ` F ) ) | 
						
							| 97 | 61 62 63 54 71 96 | climsubc1mpt |  |-  ( ph -> ( n e. ( ZZ>= ` K ) |-> ( ( M ` ( E ` K ) ) - ( M ` ( G ` n ) ) ) ) ~~> ( ( M ` ( E ` K ) ) - ( M ` F ) ) ) | 
						
							| 98 | 60 97 | eqbrtrd |  |-  ( ph -> ( n e. ( ZZ>= ` K ) |-> ( M ` ( E ` n ) ) ) ~~> ( ( M ` ( E ` K ) ) - ( M ` F ) ) ) | 
						
							| 99 |  | eqid |  |-  ( n e. Z |-> ( M ` ( E ` n ) ) ) = ( n e. Z |-> ( M ` ( E ` n ) ) ) | 
						
							| 100 |  | eqid |  |-  ( n e. ( ZZ>= ` K ) |-> ( M ` ( E ` n ) ) ) = ( n e. ( ZZ>= ` K ) |-> ( M ` ( E ` n ) ) ) | 
						
							| 101 | 3 99 21 100 | climresmpt |  |-  ( ph -> ( ( n e. ( ZZ>= ` K ) |-> ( M ` ( E ` n ) ) ) ~~> ( ( M ` ( E ` K ) ) - ( M ` F ) ) <-> ( n e. Z |-> ( M ` ( E ` n ) ) ) ~~> ( ( M ` ( E ` K ) ) - ( M ` F ) ) ) ) | 
						
							| 102 | 98 101 | mpbid |  |-  ( ph -> ( n e. Z |-> ( M ` ( E ` n ) ) ) ~~> ( ( M ` ( E ` K ) ) - ( M ` F ) ) ) | 
						
							| 103 | 8 | a1i |  |-  ( ph -> S = ( n e. Z |-> ( M ` ( E ` n ) ) ) ) | 
						
							| 104 |  | eqidd |  |-  ( ph -> ( M ` ( F u. ( ( E ` K ) \ F ) ) ) = ( M ` ( F u. ( ( E ` K ) \ F ) ) ) ) | 
						
							| 105 | 3 | uzct |  |-  Z ~<_ _om | 
						
							| 106 | 105 | a1i |  |-  ( ph -> Z ~<_ _om ) | 
						
							| 107 | 19 106 68 | saliuncl |  |-  ( ph -> U_ n e. Z ( G ` n ) e. dom M ) | 
						
							| 108 | 10 107 | eqeltrid |  |-  ( ph -> F e. dom M ) | 
						
							| 109 |  | saldifcl2 |  |-  ( ( dom M e. SAlg /\ ( E ` K ) e. dom M /\ F e. dom M ) -> ( ( E ` K ) \ F ) e. dom M ) | 
						
							| 110 | 19 23 108 109 | syl3anc |  |-  ( ph -> ( ( E ` K ) \ F ) e. dom M ) | 
						
							| 111 |  | disjdif |  |-  ( F i^i ( ( E ` K ) \ F ) ) = (/) | 
						
							| 112 | 111 | a1i |  |-  ( ph -> ( F i^i ( ( E ` K ) \ F ) ) = (/) ) | 
						
							| 113 | 65 | iunssd |  |-  ( ph -> U_ n e. Z ( G ` n ) C_ ( E ` K ) ) | 
						
							| 114 | 10 113 | eqsstrid |  |-  ( ph -> F C_ ( E ` K ) ) | 
						
							| 115 | 1 23 7 114 108 | meassre |  |-  ( ph -> ( M ` F ) e. RR ) | 
						
							| 116 |  | difssd |  |-  ( ph -> ( ( E ` K ) \ F ) C_ ( E ` K ) ) | 
						
							| 117 | 1 23 7 116 110 | meassre |  |-  ( ph -> ( M ` ( ( E ` K ) \ F ) ) e. RR ) | 
						
							| 118 | 1 18 108 110 112 115 117 | meadjunre |  |-  ( ph -> ( M ` ( F u. ( ( E ` K ) \ F ) ) ) = ( ( M ` F ) + ( M ` ( ( E ` K ) \ F ) ) ) ) | 
						
							| 119 |  | undif |  |-  ( F C_ ( E ` K ) <-> ( F u. ( ( E ` K ) \ F ) ) = ( E ` K ) ) | 
						
							| 120 | 114 119 | sylib |  |-  ( ph -> ( F u. ( ( E ` K ) \ F ) ) = ( E ` K ) ) | 
						
							| 121 | 120 | fveq2d |  |-  ( ph -> ( M ` ( F u. ( ( E ` K ) \ F ) ) ) = ( M ` ( E ` K ) ) ) | 
						
							| 122 | 104 118 121 | 3eqtr3d |  |-  ( ph -> ( ( M ` F ) + ( M ` ( ( E ` K ) \ F ) ) ) = ( M ` ( E ` K ) ) ) | 
						
							| 123 | 115 | recnd |  |-  ( ph -> ( M ` F ) e. CC ) | 
						
							| 124 | 117 | recnd |  |-  ( ph -> ( M ` ( ( E ` K ) \ F ) ) e. CC ) | 
						
							| 125 | 54 123 124 | subaddd |  |-  ( ph -> ( ( ( M ` ( E ` K ) ) - ( M ` F ) ) = ( M ` ( ( E ` K ) \ F ) ) <-> ( ( M ` F ) + ( M ` ( ( E ` K ) \ F ) ) ) = ( M ` ( E ` K ) ) ) ) | 
						
							| 126 | 122 125 | mpbird |  |-  ( ph -> ( ( M ` ( E ` K ) ) - ( M ` F ) ) = ( M ` ( ( E ` K ) \ F ) ) ) | 
						
							| 127 |  | simpllr |  |-  ( ( ( ( ph /\ x e. ( ( E ` K ) \ F ) ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> x e. ( ( E ` K ) \ F ) ) | 
						
							| 128 |  | simplr |  |-  ( ( ( x e. ( ( E ` K ) \ F ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> n e. Z ) | 
						
							| 129 |  | eldifi |  |-  ( x e. ( ( E ` K ) \ F ) -> x e. ( E ` K ) ) | 
						
							| 130 | 129 | ad2antrr |  |-  ( ( ( x e. ( ( E ` K ) \ F ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> x e. ( E ` K ) ) | 
						
							| 131 |  | simpr |  |-  ( ( ( x e. ( ( E ` K ) \ F ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> -. x e. ( E ` n ) ) | 
						
							| 132 | 130 131 | eldifd |  |-  ( ( ( x e. ( ( E ` K ) \ F ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> x e. ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 133 |  | rspe |  |-  ( ( n e. Z /\ x e. ( ( E ` K ) \ ( E ` n ) ) ) -> E. n e. Z x e. ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 134 | 128 132 133 | syl2anc |  |-  ( ( ( x e. ( ( E ` K ) \ F ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> E. n e. Z x e. ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 135 |  | eliun |  |-  ( x e. U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) <-> E. n e. Z x e. ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 136 | 134 135 | sylibr |  |-  ( ( ( x e. ( ( E ` K ) \ F ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> x e. U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 137 | 136 | adantlll |  |-  ( ( ( ( ph /\ x e. ( ( E ` K ) \ F ) ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> x e. U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 138 | 10 | a1i |  |-  ( ph -> F = U_ n e. Z ( G ` n ) ) | 
						
							| 139 | 29 | iuneq2dv |  |-  ( ph -> U_ n e. Z ( G ` n ) = U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 140 | 138 139 | eqtrd |  |-  ( ph -> F = U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 141 | 140 | eqcomd |  |-  ( ph -> U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) = F ) | 
						
							| 142 | 141 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. ( ( E ` K ) \ F ) ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) = F ) | 
						
							| 143 | 137 142 | eleqtrd |  |-  ( ( ( ( ph /\ x e. ( ( E ` K ) \ F ) ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> x e. F ) | 
						
							| 144 |  | elndif |  |-  ( x e. F -> -. x e. ( ( E ` K ) \ F ) ) | 
						
							| 145 | 143 144 | syl |  |-  ( ( ( ( ph /\ x e. ( ( E ` K ) \ F ) ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> -. x e. ( ( E ` K ) \ F ) ) | 
						
							| 146 | 127 145 | condan |  |-  ( ( ( ph /\ x e. ( ( E ` K ) \ F ) ) /\ n e. Z ) -> x e. ( E ` n ) ) | 
						
							| 147 | 146 | ralrimiva |  |-  ( ( ph /\ x e. ( ( E ` K ) \ F ) ) -> A. n e. Z x e. ( E ` n ) ) | 
						
							| 148 |  | vex |  |-  x e. _V | 
						
							| 149 |  | eliin |  |-  ( x e. _V -> ( x e. |^|_ n e. Z ( E ` n ) <-> A. n e. Z x e. ( E ` n ) ) ) | 
						
							| 150 | 148 149 | ax-mp |  |-  ( x e. |^|_ n e. Z ( E ` n ) <-> A. n e. Z x e. ( E ` n ) ) | 
						
							| 151 | 147 150 | sylibr |  |-  ( ( ph /\ x e. ( ( E ` K ) \ F ) ) -> x e. |^|_ n e. Z ( E ` n ) ) | 
						
							| 152 | 151 | ssd |  |-  ( ph -> ( ( E ` K ) \ F ) C_ |^|_ n e. Z ( E ` n ) ) | 
						
							| 153 |  | ssid |  |-  ( E ` K ) C_ ( E ` K ) | 
						
							| 154 | 153 | a1i |  |-  ( ph -> ( E ` K ) C_ ( E ` K ) ) | 
						
							| 155 |  | fveq2 |  |-  ( n = K -> ( E ` n ) = ( E ` K ) ) | 
						
							| 156 | 155 | sseq1d |  |-  ( n = K -> ( ( E ` n ) C_ ( E ` K ) <-> ( E ` K ) C_ ( E ` K ) ) ) | 
						
							| 157 | 156 | rspcev |  |-  ( ( K e. Z /\ ( E ` K ) C_ ( E ` K ) ) -> E. n e. Z ( E ` n ) C_ ( E ` K ) ) | 
						
							| 158 | 21 154 157 | syl2anc |  |-  ( ph -> E. n e. Z ( E ` n ) C_ ( E ` K ) ) | 
						
							| 159 |  | iinss |  |-  ( E. n e. Z ( E ` n ) C_ ( E ` K ) -> |^|_ n e. Z ( E ` n ) C_ ( E ` K ) ) | 
						
							| 160 | 158 159 | syl |  |-  ( ph -> |^|_ n e. Z ( E ` n ) C_ ( E ` K ) ) | 
						
							| 161 | 160 | adantr |  |-  ( ( ph /\ x e. |^|_ n e. Z ( E ` n ) ) -> |^|_ n e. Z ( E ` n ) C_ ( E ` K ) ) | 
						
							| 162 |  | simpr |  |-  ( ( ph /\ x e. |^|_ n e. Z ( E ` n ) ) -> x e. |^|_ n e. Z ( E ` n ) ) | 
						
							| 163 | 161 162 | sseldd |  |-  ( ( ph /\ x e. |^|_ n e. Z ( E ` n ) ) -> x e. ( E ` K ) ) | 
						
							| 164 |  | nfcv |  |-  F/_ n x | 
						
							| 165 |  | nfii1 |  |-  F/_ n |^|_ n e. Z ( E ` n ) | 
						
							| 166 | 164 165 | nfel |  |-  F/ n x e. |^|_ n e. Z ( E ` n ) | 
						
							| 167 |  | iinss2 |  |-  ( n e. Z -> |^|_ n e. Z ( E ` n ) C_ ( E ` n ) ) | 
						
							| 168 | 167 | adantl |  |-  ( ( x e. |^|_ n e. Z ( E ` n ) /\ n e. Z ) -> |^|_ n e. Z ( E ` n ) C_ ( E ` n ) ) | 
						
							| 169 |  | simpl |  |-  ( ( x e. |^|_ n e. Z ( E ` n ) /\ n e. Z ) -> x e. |^|_ n e. Z ( E ` n ) ) | 
						
							| 170 | 168 169 | sseldd |  |-  ( ( x e. |^|_ n e. Z ( E ` n ) /\ n e. Z ) -> x e. ( E ` n ) ) | 
						
							| 171 |  | elndif |  |-  ( x e. ( E ` n ) -> -. x e. ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 172 | 170 171 | syl |  |-  ( ( x e. |^|_ n e. Z ( E ` n ) /\ n e. Z ) -> -. x e. ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 173 | 172 | ex |  |-  ( x e. |^|_ n e. Z ( E ` n ) -> ( n e. Z -> -. x e. ( ( E ` K ) \ ( E ` n ) ) ) ) | 
						
							| 174 | 166 173 | ralrimi |  |-  ( x e. |^|_ n e. Z ( E ` n ) -> A. n e. Z -. x e. ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 175 |  | ralnex |  |-  ( A. n e. Z -. x e. ( ( E ` K ) \ ( E ` n ) ) <-> -. E. n e. Z x e. ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 176 | 174 175 | sylib |  |-  ( x e. |^|_ n e. Z ( E ` n ) -> -. E. n e. Z x e. ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 177 | 176 135 | sylnibr |  |-  ( x e. |^|_ n e. Z ( E ` n ) -> -. x e. U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 178 | 177 | adantl |  |-  ( ( ph /\ x e. |^|_ n e. Z ( E ` n ) ) -> -. x e. U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 179 | 140 | adantr |  |-  ( ( ph /\ x e. |^|_ n e. Z ( E ` n ) ) -> F = U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) ) | 
						
							| 180 | 178 179 | neleqtrrd |  |-  ( ( ph /\ x e. |^|_ n e. Z ( E ` n ) ) -> -. x e. F ) | 
						
							| 181 | 163 180 | eldifd |  |-  ( ( ph /\ x e. |^|_ n e. Z ( E ` n ) ) -> x e. ( ( E ` K ) \ F ) ) | 
						
							| 182 | 152 181 | eqelssd |  |-  ( ph -> ( ( E ` K ) \ F ) = |^|_ n e. Z ( E ` n ) ) | 
						
							| 183 | 182 | fveq2d |  |-  ( ph -> ( M ` ( ( E ` K ) \ F ) ) = ( M ` |^|_ n e. Z ( E ` n ) ) ) | 
						
							| 184 | 126 183 | eqtr2d |  |-  ( ph -> ( M ` |^|_ n e. Z ( E ` n ) ) = ( ( M ` ( E ` K ) ) - ( M ` F ) ) ) | 
						
							| 185 | 103 184 | breq12d |  |-  ( ph -> ( S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) <-> ( n e. Z |-> ( M ` ( E ` n ) ) ) ~~> ( ( M ` ( E ` K ) ) - ( M ` F ) ) ) ) | 
						
							| 186 | 102 185 | mpbird |  |-  ( ph -> S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) ) |