Step |
Hyp |
Ref |
Expression |
1 |
|
meaiininclem.m |
|- ( ph -> M e. Meas ) |
2 |
|
meaiininclem.n |
|- ( ph -> N e. ZZ ) |
3 |
|
meaiininclem.z |
|- Z = ( ZZ>= ` N ) |
4 |
|
meaiininclem.e |
|- ( ph -> E : Z --> dom M ) |
5 |
|
meaiininclem.i |
|- ( ( ph /\ n e. Z ) -> ( E ` ( n + 1 ) ) C_ ( E ` n ) ) |
6 |
|
meaiininclem.k |
|- ( ph -> K e. ( ZZ>= ` N ) ) |
7 |
|
meaiininclem.r |
|- ( ph -> ( M ` ( E ` K ) ) e. RR ) |
8 |
|
meaiininclem.s |
|- S = ( n e. Z |-> ( M ` ( E ` n ) ) ) |
9 |
|
meaiininclem.g |
|- G = ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) |
10 |
|
meaiininclem.f |
|- F = U_ n e. Z ( G ` n ) |
11 |
|
uzss |
|- ( K e. ( ZZ>= ` N ) -> ( ZZ>= ` K ) C_ ( ZZ>= ` N ) ) |
12 |
6 11
|
syl |
|- ( ph -> ( ZZ>= ` K ) C_ ( ZZ>= ` N ) ) |
13 |
12 3
|
sseqtrrdi |
|- ( ph -> ( ZZ>= ` K ) C_ Z ) |
14 |
13
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( ZZ>= ` K ) C_ Z ) |
15 |
|
simpr |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> n e. ( ZZ>= ` K ) ) |
16 |
14 15
|
sseldd |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> n e. Z ) |
17 |
9
|
a1i |
|- ( ph -> G = ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) ) |
18 |
|
eqid |
|- dom M = dom M |
19 |
1 18
|
dmmeasal |
|- ( ph -> dom M e. SAlg ) |
20 |
19
|
adantr |
|- ( ( ph /\ n e. Z ) -> dom M e. SAlg ) |
21 |
6 3
|
eleqtrrdi |
|- ( ph -> K e. Z ) |
22 |
4
|
ffvelrnda |
|- ( ( ph /\ K e. Z ) -> ( E ` K ) e. dom M ) |
23 |
21 22
|
mpdan |
|- ( ph -> ( E ` K ) e. dom M ) |
24 |
23
|
adantr |
|- ( ( ph /\ n e. Z ) -> ( E ` K ) e. dom M ) |
25 |
4
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( E ` n ) e. dom M ) |
26 |
|
saldifcl2 |
|- ( ( dom M e. SAlg /\ ( E ` K ) e. dom M /\ ( E ` n ) e. dom M ) -> ( ( E ` K ) \ ( E ` n ) ) e. dom M ) |
27 |
20 24 25 26
|
syl3anc |
|- ( ( ph /\ n e. Z ) -> ( ( E ` K ) \ ( E ` n ) ) e. dom M ) |
28 |
27
|
elexd |
|- ( ( ph /\ n e. Z ) -> ( ( E ` K ) \ ( E ` n ) ) e. _V ) |
29 |
17 28
|
fvmpt2d |
|- ( ( ph /\ n e. Z ) -> ( G ` n ) = ( ( E ` K ) \ ( E ` n ) ) ) |
30 |
16 29
|
syldan |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( G ` n ) = ( ( E ` K ) \ ( E ` n ) ) ) |
31 |
30
|
fveq2d |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( G ` n ) ) = ( M ` ( ( E ` K ) \ ( E ` n ) ) ) ) |
32 |
1
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> M e. Meas ) |
33 |
23
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( E ` K ) e. dom M ) |
34 |
7
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( E ` K ) ) e. RR ) |
35 |
16 25
|
syldan |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( E ` n ) e. dom M ) |
36 |
|
simpl |
|- ( ( ph /\ m e. ( K ..^ n ) ) -> ph ) |
37 |
36 13
|
syl |
|- ( ( ph /\ m e. ( K ..^ n ) ) -> ( ZZ>= ` K ) C_ Z ) |
38 |
|
elfzouz |
|- ( m e. ( K ..^ n ) -> m e. ( ZZ>= ` K ) ) |
39 |
38
|
adantl |
|- ( ( ph /\ m e. ( K ..^ n ) ) -> m e. ( ZZ>= ` K ) ) |
40 |
37 39
|
sseldd |
|- ( ( ph /\ m e. ( K ..^ n ) ) -> m e. Z ) |
41 |
|
eleq1w |
|- ( n = m -> ( n e. Z <-> m e. Z ) ) |
42 |
41
|
anbi2d |
|- ( n = m -> ( ( ph /\ n e. Z ) <-> ( ph /\ m e. Z ) ) ) |
43 |
|
fvoveq1 |
|- ( n = m -> ( E ` ( n + 1 ) ) = ( E ` ( m + 1 ) ) ) |
44 |
|
fveq2 |
|- ( n = m -> ( E ` n ) = ( E ` m ) ) |
45 |
43 44
|
sseq12d |
|- ( n = m -> ( ( E ` ( n + 1 ) ) C_ ( E ` n ) <-> ( E ` ( m + 1 ) ) C_ ( E ` m ) ) ) |
46 |
42 45
|
imbi12d |
|- ( n = m -> ( ( ( ph /\ n e. Z ) -> ( E ` ( n + 1 ) ) C_ ( E ` n ) ) <-> ( ( ph /\ m e. Z ) -> ( E ` ( m + 1 ) ) C_ ( E ` m ) ) ) ) |
47 |
46 5
|
chvarvv |
|- ( ( ph /\ m e. Z ) -> ( E ` ( m + 1 ) ) C_ ( E ` m ) ) |
48 |
36 40 47
|
syl2anc |
|- ( ( ph /\ m e. ( K ..^ n ) ) -> ( E ` ( m + 1 ) ) C_ ( E ` m ) ) |
49 |
48
|
adantlr |
|- ( ( ( ph /\ n e. ( ZZ>= ` K ) ) /\ m e. ( K ..^ n ) ) -> ( E ` ( m + 1 ) ) C_ ( E ` m ) ) |
50 |
15 49
|
ssdec |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( E ` n ) C_ ( E ` K ) ) |
51 |
32 33 34 35 50
|
meadif |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( ( E ` K ) \ ( E ` n ) ) ) = ( ( M ` ( E ` K ) ) - ( M ` ( E ` n ) ) ) ) |
52 |
31 51
|
eqtrd |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( G ` n ) ) = ( ( M ` ( E ` K ) ) - ( M ` ( E ` n ) ) ) ) |
53 |
52
|
oveq2d |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( ( M ` ( E ` K ) ) - ( M ` ( G ` n ) ) ) = ( ( M ` ( E ` K ) ) - ( ( M ` ( E ` K ) ) - ( M ` ( E ` n ) ) ) ) ) |
54 |
7
|
recnd |
|- ( ph -> ( M ` ( E ` K ) ) e. CC ) |
55 |
54
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( E ` K ) ) e. CC ) |
56 |
32 33 34 50 35
|
meassre |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( E ` n ) ) e. RR ) |
57 |
56
|
recnd |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( E ` n ) ) e. CC ) |
58 |
55 57
|
nncand |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( ( M ` ( E ` K ) ) - ( ( M ` ( E ` K ) ) - ( M ` ( E ` n ) ) ) ) = ( M ` ( E ` n ) ) ) |
59 |
53 58
|
eqtr2d |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( E ` n ) ) = ( ( M ` ( E ` K ) ) - ( M ` ( G ` n ) ) ) ) |
60 |
59
|
mpteq2dva |
|- ( ph -> ( n e. ( ZZ>= ` K ) |-> ( M ` ( E ` n ) ) ) = ( n e. ( ZZ>= ` K ) |-> ( ( M ` ( E ` K ) ) - ( M ` ( G ` n ) ) ) ) ) |
61 |
|
nfv |
|- F/ n ph |
62 |
|
eqid |
|- ( ZZ>= ` K ) = ( ZZ>= ` K ) |
63 |
6
|
eluzelzd |
|- ( ph -> K e. ZZ ) |
64 |
|
difssd |
|- ( ( ph /\ n e. Z ) -> ( ( E ` K ) \ ( E ` n ) ) C_ ( E ` K ) ) |
65 |
29 64
|
eqsstrd |
|- ( ( ph /\ n e. Z ) -> ( G ` n ) C_ ( E ` K ) ) |
66 |
16 65
|
syldan |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( G ` n ) C_ ( E ` K ) ) |
67 |
27 9
|
fmptd |
|- ( ph -> G : Z --> dom M ) |
68 |
67
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( G ` n ) e. dom M ) |
69 |
16 68
|
syldan |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( G ` n ) e. dom M ) |
70 |
32 33 34 66 69
|
meassre |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( G ` n ) ) e. RR ) |
71 |
70
|
recnd |
|- ( ( ph /\ n e. ( ZZ>= ` K ) ) -> ( M ` ( G ` n ) ) e. CC ) |
72 |
5
|
sscond |
|- ( ( ph /\ n e. Z ) -> ( ( E ` K ) \ ( E ` n ) ) C_ ( ( E ` K ) \ ( E ` ( n + 1 ) ) ) ) |
73 |
44
|
difeq2d |
|- ( n = m -> ( ( E ` K ) \ ( E ` n ) ) = ( ( E ` K ) \ ( E ` m ) ) ) |
74 |
73
|
cbvmptv |
|- ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) = ( m e. Z |-> ( ( E ` K ) \ ( E ` m ) ) ) |
75 |
9 74
|
eqtri |
|- G = ( m e. Z |-> ( ( E ` K ) \ ( E ` m ) ) ) |
76 |
|
fveq2 |
|- ( m = ( n + 1 ) -> ( E ` m ) = ( E ` ( n + 1 ) ) ) |
77 |
76
|
difeq2d |
|- ( m = ( n + 1 ) -> ( ( E ` K ) \ ( E ` m ) ) = ( ( E ` K ) \ ( E ` ( n + 1 ) ) ) ) |
78 |
3
|
peano2uzs |
|- ( n e. Z -> ( n + 1 ) e. Z ) |
79 |
78
|
adantl |
|- ( ( ph /\ n e. Z ) -> ( n + 1 ) e. Z ) |
80 |
|
fvex |
|- ( E ` K ) e. _V |
81 |
80
|
difexi |
|- ( ( E ` K ) \ ( E ` ( n + 1 ) ) ) e. _V |
82 |
81
|
a1i |
|- ( ( ph /\ n e. Z ) -> ( ( E ` K ) \ ( E ` ( n + 1 ) ) ) e. _V ) |
83 |
75 77 79 82
|
fvmptd3 |
|- ( ( ph /\ n e. Z ) -> ( G ` ( n + 1 ) ) = ( ( E ` K ) \ ( E ` ( n + 1 ) ) ) ) |
84 |
29 83
|
sseq12d |
|- ( ( ph /\ n e. Z ) -> ( ( G ` n ) C_ ( G ` ( n + 1 ) ) <-> ( ( E ` K ) \ ( E ` n ) ) C_ ( ( E ` K ) \ ( E ` ( n + 1 ) ) ) ) ) |
85 |
72 84
|
mpbird |
|- ( ( ph /\ n e. Z ) -> ( G ` n ) C_ ( G ` ( n + 1 ) ) ) |
86 |
1
|
adantr |
|- ( ( ph /\ n e. Z ) -> M e. Meas ) |
87 |
86 18 68 24 65
|
meassle |
|- ( ( ph /\ n e. Z ) -> ( M ` ( G ` n ) ) <_ ( M ` ( E ` K ) ) ) |
88 |
|
eqid |
|- ( n e. Z |-> ( M ` ( G ` n ) ) ) = ( n e. Z |-> ( M ` ( G ` n ) ) ) |
89 |
1 2 3 67 85 7 87 88
|
meaiuninc2 |
|- ( ph -> ( n e. Z |-> ( M ` ( G ` n ) ) ) ~~> ( M ` U_ n e. Z ( G ` n ) ) ) |
90 |
|
eqid |
|- ( n e. ( ZZ>= ` K ) |-> ( M ` ( G ` n ) ) ) = ( n e. ( ZZ>= ` K ) |-> ( M ` ( G ` n ) ) ) |
91 |
3 88 21 90
|
climresmpt |
|- ( ph -> ( ( n e. ( ZZ>= ` K ) |-> ( M ` ( G ` n ) ) ) ~~> ( M ` U_ n e. Z ( G ` n ) ) <-> ( n e. Z |-> ( M ` ( G ` n ) ) ) ~~> ( M ` U_ n e. Z ( G ` n ) ) ) ) |
92 |
89 91
|
mpbird |
|- ( ph -> ( n e. ( ZZ>= ` K ) |-> ( M ` ( G ` n ) ) ) ~~> ( M ` U_ n e. Z ( G ` n ) ) ) |
93 |
10
|
eqcomi |
|- U_ n e. Z ( G ` n ) = F |
94 |
93
|
fveq2i |
|- ( M ` U_ n e. Z ( G ` n ) ) = ( M ` F ) |
95 |
94
|
a1i |
|- ( ph -> ( M ` U_ n e. Z ( G ` n ) ) = ( M ` F ) ) |
96 |
92 95
|
breqtrd |
|- ( ph -> ( n e. ( ZZ>= ` K ) |-> ( M ` ( G ` n ) ) ) ~~> ( M ` F ) ) |
97 |
61 62 63 54 71 96
|
climsubc1mpt |
|- ( ph -> ( n e. ( ZZ>= ` K ) |-> ( ( M ` ( E ` K ) ) - ( M ` ( G ` n ) ) ) ) ~~> ( ( M ` ( E ` K ) ) - ( M ` F ) ) ) |
98 |
60 97
|
eqbrtrd |
|- ( ph -> ( n e. ( ZZ>= ` K ) |-> ( M ` ( E ` n ) ) ) ~~> ( ( M ` ( E ` K ) ) - ( M ` F ) ) ) |
99 |
|
eqid |
|- ( n e. Z |-> ( M ` ( E ` n ) ) ) = ( n e. Z |-> ( M ` ( E ` n ) ) ) |
100 |
|
eqid |
|- ( n e. ( ZZ>= ` K ) |-> ( M ` ( E ` n ) ) ) = ( n e. ( ZZ>= ` K ) |-> ( M ` ( E ` n ) ) ) |
101 |
3 99 21 100
|
climresmpt |
|- ( ph -> ( ( n e. ( ZZ>= ` K ) |-> ( M ` ( E ` n ) ) ) ~~> ( ( M ` ( E ` K ) ) - ( M ` F ) ) <-> ( n e. Z |-> ( M ` ( E ` n ) ) ) ~~> ( ( M ` ( E ` K ) ) - ( M ` F ) ) ) ) |
102 |
98 101
|
mpbid |
|- ( ph -> ( n e. Z |-> ( M ` ( E ` n ) ) ) ~~> ( ( M ` ( E ` K ) ) - ( M ` F ) ) ) |
103 |
8
|
a1i |
|- ( ph -> S = ( n e. Z |-> ( M ` ( E ` n ) ) ) ) |
104 |
|
eqidd |
|- ( ph -> ( M ` ( F u. ( ( E ` K ) \ F ) ) ) = ( M ` ( F u. ( ( E ` K ) \ F ) ) ) ) |
105 |
3
|
uzct |
|- Z ~<_ _om |
106 |
105
|
a1i |
|- ( ph -> Z ~<_ _om ) |
107 |
19 106 68
|
saliuncl |
|- ( ph -> U_ n e. Z ( G ` n ) e. dom M ) |
108 |
10 107
|
eqeltrid |
|- ( ph -> F e. dom M ) |
109 |
|
saldifcl2 |
|- ( ( dom M e. SAlg /\ ( E ` K ) e. dom M /\ F e. dom M ) -> ( ( E ` K ) \ F ) e. dom M ) |
110 |
19 23 108 109
|
syl3anc |
|- ( ph -> ( ( E ` K ) \ F ) e. dom M ) |
111 |
|
disjdif |
|- ( F i^i ( ( E ` K ) \ F ) ) = (/) |
112 |
111
|
a1i |
|- ( ph -> ( F i^i ( ( E ` K ) \ F ) ) = (/) ) |
113 |
65
|
iunssd |
|- ( ph -> U_ n e. Z ( G ` n ) C_ ( E ` K ) ) |
114 |
10 113
|
eqsstrid |
|- ( ph -> F C_ ( E ` K ) ) |
115 |
1 23 7 114 108
|
meassre |
|- ( ph -> ( M ` F ) e. RR ) |
116 |
|
difssd |
|- ( ph -> ( ( E ` K ) \ F ) C_ ( E ` K ) ) |
117 |
1 23 7 116 110
|
meassre |
|- ( ph -> ( M ` ( ( E ` K ) \ F ) ) e. RR ) |
118 |
1 18 108 110 112 115 117
|
meadjunre |
|- ( ph -> ( M ` ( F u. ( ( E ` K ) \ F ) ) ) = ( ( M ` F ) + ( M ` ( ( E ` K ) \ F ) ) ) ) |
119 |
|
undif |
|- ( F C_ ( E ` K ) <-> ( F u. ( ( E ` K ) \ F ) ) = ( E ` K ) ) |
120 |
114 119
|
sylib |
|- ( ph -> ( F u. ( ( E ` K ) \ F ) ) = ( E ` K ) ) |
121 |
120
|
fveq2d |
|- ( ph -> ( M ` ( F u. ( ( E ` K ) \ F ) ) ) = ( M ` ( E ` K ) ) ) |
122 |
104 118 121
|
3eqtr3d |
|- ( ph -> ( ( M ` F ) + ( M ` ( ( E ` K ) \ F ) ) ) = ( M ` ( E ` K ) ) ) |
123 |
115
|
recnd |
|- ( ph -> ( M ` F ) e. CC ) |
124 |
117
|
recnd |
|- ( ph -> ( M ` ( ( E ` K ) \ F ) ) e. CC ) |
125 |
54 123 124
|
subaddd |
|- ( ph -> ( ( ( M ` ( E ` K ) ) - ( M ` F ) ) = ( M ` ( ( E ` K ) \ F ) ) <-> ( ( M ` F ) + ( M ` ( ( E ` K ) \ F ) ) ) = ( M ` ( E ` K ) ) ) ) |
126 |
122 125
|
mpbird |
|- ( ph -> ( ( M ` ( E ` K ) ) - ( M ` F ) ) = ( M ` ( ( E ` K ) \ F ) ) ) |
127 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ( ( E ` K ) \ F ) ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> x e. ( ( E ` K ) \ F ) ) |
128 |
|
simplr |
|- ( ( ( x e. ( ( E ` K ) \ F ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> n e. Z ) |
129 |
|
eldifi |
|- ( x e. ( ( E ` K ) \ F ) -> x e. ( E ` K ) ) |
130 |
129
|
ad2antrr |
|- ( ( ( x e. ( ( E ` K ) \ F ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> x e. ( E ` K ) ) |
131 |
|
simpr |
|- ( ( ( x e. ( ( E ` K ) \ F ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> -. x e. ( E ` n ) ) |
132 |
130 131
|
eldifd |
|- ( ( ( x e. ( ( E ` K ) \ F ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> x e. ( ( E ` K ) \ ( E ` n ) ) ) |
133 |
|
rspe |
|- ( ( n e. Z /\ x e. ( ( E ` K ) \ ( E ` n ) ) ) -> E. n e. Z x e. ( ( E ` K ) \ ( E ` n ) ) ) |
134 |
128 132 133
|
syl2anc |
|- ( ( ( x e. ( ( E ` K ) \ F ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> E. n e. Z x e. ( ( E ` K ) \ ( E ` n ) ) ) |
135 |
|
eliun |
|- ( x e. U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) <-> E. n e. Z x e. ( ( E ` K ) \ ( E ` n ) ) ) |
136 |
134 135
|
sylibr |
|- ( ( ( x e. ( ( E ` K ) \ F ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> x e. U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) ) |
137 |
136
|
adantlll |
|- ( ( ( ( ph /\ x e. ( ( E ` K ) \ F ) ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> x e. U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) ) |
138 |
10
|
a1i |
|- ( ph -> F = U_ n e. Z ( G ` n ) ) |
139 |
29
|
iuneq2dv |
|- ( ph -> U_ n e. Z ( G ` n ) = U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) ) |
140 |
138 139
|
eqtrd |
|- ( ph -> F = U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) ) |
141 |
140
|
eqcomd |
|- ( ph -> U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) = F ) |
142 |
141
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( ( E ` K ) \ F ) ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) = F ) |
143 |
137 142
|
eleqtrd |
|- ( ( ( ( ph /\ x e. ( ( E ` K ) \ F ) ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> x e. F ) |
144 |
|
elndif |
|- ( x e. F -> -. x e. ( ( E ` K ) \ F ) ) |
145 |
143 144
|
syl |
|- ( ( ( ( ph /\ x e. ( ( E ` K ) \ F ) ) /\ n e. Z ) /\ -. x e. ( E ` n ) ) -> -. x e. ( ( E ` K ) \ F ) ) |
146 |
127 145
|
condan |
|- ( ( ( ph /\ x e. ( ( E ` K ) \ F ) ) /\ n e. Z ) -> x e. ( E ` n ) ) |
147 |
146
|
ralrimiva |
|- ( ( ph /\ x e. ( ( E ` K ) \ F ) ) -> A. n e. Z x e. ( E ` n ) ) |
148 |
|
vex |
|- x e. _V |
149 |
|
eliin |
|- ( x e. _V -> ( x e. |^|_ n e. Z ( E ` n ) <-> A. n e. Z x e. ( E ` n ) ) ) |
150 |
148 149
|
ax-mp |
|- ( x e. |^|_ n e. Z ( E ` n ) <-> A. n e. Z x e. ( E ` n ) ) |
151 |
147 150
|
sylibr |
|- ( ( ph /\ x e. ( ( E ` K ) \ F ) ) -> x e. |^|_ n e. Z ( E ` n ) ) |
152 |
151
|
ssd |
|- ( ph -> ( ( E ` K ) \ F ) C_ |^|_ n e. Z ( E ` n ) ) |
153 |
|
ssid |
|- ( E ` K ) C_ ( E ` K ) |
154 |
153
|
a1i |
|- ( ph -> ( E ` K ) C_ ( E ` K ) ) |
155 |
|
fveq2 |
|- ( n = K -> ( E ` n ) = ( E ` K ) ) |
156 |
155
|
sseq1d |
|- ( n = K -> ( ( E ` n ) C_ ( E ` K ) <-> ( E ` K ) C_ ( E ` K ) ) ) |
157 |
156
|
rspcev |
|- ( ( K e. Z /\ ( E ` K ) C_ ( E ` K ) ) -> E. n e. Z ( E ` n ) C_ ( E ` K ) ) |
158 |
21 154 157
|
syl2anc |
|- ( ph -> E. n e. Z ( E ` n ) C_ ( E ` K ) ) |
159 |
|
iinss |
|- ( E. n e. Z ( E ` n ) C_ ( E ` K ) -> |^|_ n e. Z ( E ` n ) C_ ( E ` K ) ) |
160 |
158 159
|
syl |
|- ( ph -> |^|_ n e. Z ( E ` n ) C_ ( E ` K ) ) |
161 |
160
|
adantr |
|- ( ( ph /\ x e. |^|_ n e. Z ( E ` n ) ) -> |^|_ n e. Z ( E ` n ) C_ ( E ` K ) ) |
162 |
|
simpr |
|- ( ( ph /\ x e. |^|_ n e. Z ( E ` n ) ) -> x e. |^|_ n e. Z ( E ` n ) ) |
163 |
161 162
|
sseldd |
|- ( ( ph /\ x e. |^|_ n e. Z ( E ` n ) ) -> x e. ( E ` K ) ) |
164 |
|
nfcv |
|- F/_ n x |
165 |
|
nfii1 |
|- F/_ n |^|_ n e. Z ( E ` n ) |
166 |
164 165
|
nfel |
|- F/ n x e. |^|_ n e. Z ( E ` n ) |
167 |
|
iinss2 |
|- ( n e. Z -> |^|_ n e. Z ( E ` n ) C_ ( E ` n ) ) |
168 |
167
|
adantl |
|- ( ( x e. |^|_ n e. Z ( E ` n ) /\ n e. Z ) -> |^|_ n e. Z ( E ` n ) C_ ( E ` n ) ) |
169 |
|
simpl |
|- ( ( x e. |^|_ n e. Z ( E ` n ) /\ n e. Z ) -> x e. |^|_ n e. Z ( E ` n ) ) |
170 |
168 169
|
sseldd |
|- ( ( x e. |^|_ n e. Z ( E ` n ) /\ n e. Z ) -> x e. ( E ` n ) ) |
171 |
|
elndif |
|- ( x e. ( E ` n ) -> -. x e. ( ( E ` K ) \ ( E ` n ) ) ) |
172 |
170 171
|
syl |
|- ( ( x e. |^|_ n e. Z ( E ` n ) /\ n e. Z ) -> -. x e. ( ( E ` K ) \ ( E ` n ) ) ) |
173 |
172
|
ex |
|- ( x e. |^|_ n e. Z ( E ` n ) -> ( n e. Z -> -. x e. ( ( E ` K ) \ ( E ` n ) ) ) ) |
174 |
166 173
|
ralrimi |
|- ( x e. |^|_ n e. Z ( E ` n ) -> A. n e. Z -. x e. ( ( E ` K ) \ ( E ` n ) ) ) |
175 |
|
ralnex |
|- ( A. n e. Z -. x e. ( ( E ` K ) \ ( E ` n ) ) <-> -. E. n e. Z x e. ( ( E ` K ) \ ( E ` n ) ) ) |
176 |
174 175
|
sylib |
|- ( x e. |^|_ n e. Z ( E ` n ) -> -. E. n e. Z x e. ( ( E ` K ) \ ( E ` n ) ) ) |
177 |
176 135
|
sylnibr |
|- ( x e. |^|_ n e. Z ( E ` n ) -> -. x e. U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) ) |
178 |
177
|
adantl |
|- ( ( ph /\ x e. |^|_ n e. Z ( E ` n ) ) -> -. x e. U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) ) |
179 |
140
|
adantr |
|- ( ( ph /\ x e. |^|_ n e. Z ( E ` n ) ) -> F = U_ n e. Z ( ( E ` K ) \ ( E ` n ) ) ) |
180 |
178 179
|
neleqtrrd |
|- ( ( ph /\ x e. |^|_ n e. Z ( E ` n ) ) -> -. x e. F ) |
181 |
163 180
|
eldifd |
|- ( ( ph /\ x e. |^|_ n e. Z ( E ` n ) ) -> x e. ( ( E ` K ) \ F ) ) |
182 |
152 181
|
eqelssd |
|- ( ph -> ( ( E ` K ) \ F ) = |^|_ n e. Z ( E ` n ) ) |
183 |
182
|
fveq2d |
|- ( ph -> ( M ` ( ( E ` K ) \ F ) ) = ( M ` |^|_ n e. Z ( E ` n ) ) ) |
184 |
126 183
|
eqtr2d |
|- ( ph -> ( M ` |^|_ n e. Z ( E ` n ) ) = ( ( M ` ( E ` K ) ) - ( M ` F ) ) ) |
185 |
103 184
|
breq12d |
|- ( ph -> ( S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) <-> ( n e. Z |-> ( M ` ( E ` n ) ) ) ~~> ( ( M ` ( E ` K ) ) - ( M ` F ) ) ) ) |
186 |
102 185
|
mpbird |
|- ( ph -> S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) ) |