| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaiininc.f |  |-  F/ n ph | 
						
							| 2 |  | meaiininc.m |  |-  ( ph -> M e. Meas ) | 
						
							| 3 |  | meaiininc.n |  |-  ( ph -> N e. ZZ ) | 
						
							| 4 |  | meaiininc.z |  |-  Z = ( ZZ>= ` N ) | 
						
							| 5 |  | meaiininc.e |  |-  ( ph -> E : Z --> dom M ) | 
						
							| 6 |  | meaiininc.i |  |-  ( ( ph /\ n e. Z ) -> ( E ` ( n + 1 ) ) C_ ( E ` n ) ) | 
						
							| 7 |  | meaiininc.k |  |-  ( ph -> K e. ( ZZ>= ` N ) ) | 
						
							| 8 |  | meaiininc.r |  |-  ( ph -> ( M ` ( E ` K ) ) e. RR ) | 
						
							| 9 |  | meaiininc.s |  |-  S = ( n e. Z |-> ( M ` ( E ` n ) ) ) | 
						
							| 10 |  | nfv |  |-  F/ n i e. Z | 
						
							| 11 | 1 10 | nfan |  |-  F/ n ( ph /\ i e. Z ) | 
						
							| 12 |  | nfv |  |-  F/ n ( E ` ( i + 1 ) ) C_ ( E ` i ) | 
						
							| 13 | 11 12 | nfim |  |-  F/ n ( ( ph /\ i e. Z ) -> ( E ` ( i + 1 ) ) C_ ( E ` i ) ) | 
						
							| 14 |  | eleq1w |  |-  ( n = i -> ( n e. Z <-> i e. Z ) ) | 
						
							| 15 | 14 | anbi2d |  |-  ( n = i -> ( ( ph /\ n e. Z ) <-> ( ph /\ i e. Z ) ) ) | 
						
							| 16 |  | fvoveq1 |  |-  ( n = i -> ( E ` ( n + 1 ) ) = ( E ` ( i + 1 ) ) ) | 
						
							| 17 |  | fveq2 |  |-  ( n = i -> ( E ` n ) = ( E ` i ) ) | 
						
							| 18 | 16 17 | sseq12d |  |-  ( n = i -> ( ( E ` ( n + 1 ) ) C_ ( E ` n ) <-> ( E ` ( i + 1 ) ) C_ ( E ` i ) ) ) | 
						
							| 19 | 15 18 | imbi12d |  |-  ( n = i -> ( ( ( ph /\ n e. Z ) -> ( E ` ( n + 1 ) ) C_ ( E ` n ) ) <-> ( ( ph /\ i e. Z ) -> ( E ` ( i + 1 ) ) C_ ( E ` i ) ) ) ) | 
						
							| 20 | 13 19 6 | chvarfv |  |-  ( ( ph /\ i e. Z ) -> ( E ` ( i + 1 ) ) C_ ( E ` i ) ) | 
						
							| 21 |  | 2fveq3 |  |-  ( m = i -> ( M ` ( E ` m ) ) = ( M ` ( E ` i ) ) ) | 
						
							| 22 | 21 | cbvmptv |  |-  ( m e. Z |-> ( M ` ( E ` m ) ) ) = ( i e. Z |-> ( M ` ( E ` i ) ) ) | 
						
							| 23 | 17 | difeq2d |  |-  ( n = i -> ( ( E ` K ) \ ( E ` n ) ) = ( ( E ` K ) \ ( E ` i ) ) ) | 
						
							| 24 | 23 | cbvmptv |  |-  ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) = ( i e. Z |-> ( ( E ` K ) \ ( E ` i ) ) ) | 
						
							| 25 |  | fveq2 |  |-  ( m = i -> ( ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) ` m ) = ( ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) ` i ) ) | 
						
							| 26 | 25 | cbviunv |  |-  U_ m e. Z ( ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) ` m ) = U_ i e. Z ( ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) ` i ) | 
						
							| 27 | 2 3 4 5 20 7 8 22 24 26 | meaiininclem |  |-  ( ph -> ( m e. Z |-> ( M ` ( E ` m ) ) ) ~~> ( M ` |^|_ i e. Z ( E ` i ) ) ) | 
						
							| 28 |  | 2fveq3 |  |-  ( n = m -> ( M ` ( E ` n ) ) = ( M ` ( E ` m ) ) ) | 
						
							| 29 | 28 | cbvmptv |  |-  ( n e. Z |-> ( M ` ( E ` n ) ) ) = ( m e. Z |-> ( M ` ( E ` m ) ) ) | 
						
							| 30 | 9 29 | eqtri |  |-  S = ( m e. Z |-> ( M ` ( E ` m ) ) ) | 
						
							| 31 | 30 | a1i |  |-  ( ph -> S = ( m e. Z |-> ( M ` ( E ` m ) ) ) ) | 
						
							| 32 | 17 | cbviinv |  |-  |^|_ n e. Z ( E ` n ) = |^|_ i e. Z ( E ` i ) | 
						
							| 33 | 32 | fveq2i |  |-  ( M ` |^|_ n e. Z ( E ` n ) ) = ( M ` |^|_ i e. Z ( E ` i ) ) | 
						
							| 34 | 33 | a1i |  |-  ( ph -> ( M ` |^|_ n e. Z ( E ` n ) ) = ( M ` |^|_ i e. Z ( E ` i ) ) ) | 
						
							| 35 | 31 34 | breq12d |  |-  ( ph -> ( S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) <-> ( m e. Z |-> ( M ` ( E ` m ) ) ) ~~> ( M ` |^|_ i e. Z ( E ` i ) ) ) ) | 
						
							| 36 | 27 35 | mpbird |  |-  ( ph -> S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) ) |