Step |
Hyp |
Ref |
Expression |
1 |
|
meaiininc.f |
|- F/ n ph |
2 |
|
meaiininc.m |
|- ( ph -> M e. Meas ) |
3 |
|
meaiininc.n |
|- ( ph -> N e. ZZ ) |
4 |
|
meaiininc.z |
|- Z = ( ZZ>= ` N ) |
5 |
|
meaiininc.e |
|- ( ph -> E : Z --> dom M ) |
6 |
|
meaiininc.i |
|- ( ( ph /\ n e. Z ) -> ( E ` ( n + 1 ) ) C_ ( E ` n ) ) |
7 |
|
meaiininc.k |
|- ( ph -> K e. ( ZZ>= ` N ) ) |
8 |
|
meaiininc.r |
|- ( ph -> ( M ` ( E ` K ) ) e. RR ) |
9 |
|
meaiininc.s |
|- S = ( n e. Z |-> ( M ` ( E ` n ) ) ) |
10 |
|
nfv |
|- F/ n i e. Z |
11 |
1 10
|
nfan |
|- F/ n ( ph /\ i e. Z ) |
12 |
|
nfv |
|- F/ n ( E ` ( i + 1 ) ) C_ ( E ` i ) |
13 |
11 12
|
nfim |
|- F/ n ( ( ph /\ i e. Z ) -> ( E ` ( i + 1 ) ) C_ ( E ` i ) ) |
14 |
|
eleq1w |
|- ( n = i -> ( n e. Z <-> i e. Z ) ) |
15 |
14
|
anbi2d |
|- ( n = i -> ( ( ph /\ n e. Z ) <-> ( ph /\ i e. Z ) ) ) |
16 |
|
fvoveq1 |
|- ( n = i -> ( E ` ( n + 1 ) ) = ( E ` ( i + 1 ) ) ) |
17 |
|
fveq2 |
|- ( n = i -> ( E ` n ) = ( E ` i ) ) |
18 |
16 17
|
sseq12d |
|- ( n = i -> ( ( E ` ( n + 1 ) ) C_ ( E ` n ) <-> ( E ` ( i + 1 ) ) C_ ( E ` i ) ) ) |
19 |
15 18
|
imbi12d |
|- ( n = i -> ( ( ( ph /\ n e. Z ) -> ( E ` ( n + 1 ) ) C_ ( E ` n ) ) <-> ( ( ph /\ i e. Z ) -> ( E ` ( i + 1 ) ) C_ ( E ` i ) ) ) ) |
20 |
13 19 6
|
chvarfv |
|- ( ( ph /\ i e. Z ) -> ( E ` ( i + 1 ) ) C_ ( E ` i ) ) |
21 |
|
2fveq3 |
|- ( m = i -> ( M ` ( E ` m ) ) = ( M ` ( E ` i ) ) ) |
22 |
21
|
cbvmptv |
|- ( m e. Z |-> ( M ` ( E ` m ) ) ) = ( i e. Z |-> ( M ` ( E ` i ) ) ) |
23 |
17
|
difeq2d |
|- ( n = i -> ( ( E ` K ) \ ( E ` n ) ) = ( ( E ` K ) \ ( E ` i ) ) ) |
24 |
23
|
cbvmptv |
|- ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) = ( i e. Z |-> ( ( E ` K ) \ ( E ` i ) ) ) |
25 |
|
fveq2 |
|- ( m = i -> ( ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) ` m ) = ( ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) ` i ) ) |
26 |
25
|
cbviunv |
|- U_ m e. Z ( ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) ` m ) = U_ i e. Z ( ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) ` i ) |
27 |
2 3 4 5 20 7 8 22 24 26
|
meaiininclem |
|- ( ph -> ( m e. Z |-> ( M ` ( E ` m ) ) ) ~~> ( M ` |^|_ i e. Z ( E ` i ) ) ) |
28 |
|
2fveq3 |
|- ( n = m -> ( M ` ( E ` n ) ) = ( M ` ( E ` m ) ) ) |
29 |
28
|
cbvmptv |
|- ( n e. Z |-> ( M ` ( E ` n ) ) ) = ( m e. Z |-> ( M ` ( E ` m ) ) ) |
30 |
9 29
|
eqtri |
|- S = ( m e. Z |-> ( M ` ( E ` m ) ) ) |
31 |
30
|
a1i |
|- ( ph -> S = ( m e. Z |-> ( M ` ( E ` m ) ) ) ) |
32 |
17
|
cbviinv |
|- |^|_ n e. Z ( E ` n ) = |^|_ i e. Z ( E ` i ) |
33 |
32
|
fveq2i |
|- ( M ` |^|_ n e. Z ( E ` n ) ) = ( M ` |^|_ i e. Z ( E ` i ) ) |
34 |
33
|
a1i |
|- ( ph -> ( M ` |^|_ n e. Z ( E ` n ) ) = ( M ` |^|_ i e. Z ( E ` i ) ) ) |
35 |
31 34
|
breq12d |
|- ( ph -> ( S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) <-> ( m e. Z |-> ( M ` ( E ` m ) ) ) ~~> ( M ` |^|_ i e. Z ( E ` i ) ) ) ) |
36 |
27 35
|
mpbird |
|- ( ph -> S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) ) |