Metamath Proof Explorer


Theorem meaiininc

Description: Measures are continuous from above: if E is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of Fremlin1 p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meaiininc.f
|- F/ n ph
meaiininc.m
|- ( ph -> M e. Meas )
meaiininc.n
|- ( ph -> N e. ZZ )
meaiininc.z
|- Z = ( ZZ>= ` N )
meaiininc.e
|- ( ph -> E : Z --> dom M )
meaiininc.i
|- ( ( ph /\ n e. Z ) -> ( E ` ( n + 1 ) ) C_ ( E ` n ) )
meaiininc.k
|- ( ph -> K e. ( ZZ>= ` N ) )
meaiininc.r
|- ( ph -> ( M ` ( E ` K ) ) e. RR )
meaiininc.s
|- S = ( n e. Z |-> ( M ` ( E ` n ) ) )
Assertion meaiininc
|- ( ph -> S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) )

Proof

Step Hyp Ref Expression
1 meaiininc.f
 |-  F/ n ph
2 meaiininc.m
 |-  ( ph -> M e. Meas )
3 meaiininc.n
 |-  ( ph -> N e. ZZ )
4 meaiininc.z
 |-  Z = ( ZZ>= ` N )
5 meaiininc.e
 |-  ( ph -> E : Z --> dom M )
6 meaiininc.i
 |-  ( ( ph /\ n e. Z ) -> ( E ` ( n + 1 ) ) C_ ( E ` n ) )
7 meaiininc.k
 |-  ( ph -> K e. ( ZZ>= ` N ) )
8 meaiininc.r
 |-  ( ph -> ( M ` ( E ` K ) ) e. RR )
9 meaiininc.s
 |-  S = ( n e. Z |-> ( M ` ( E ` n ) ) )
10 nfv
 |-  F/ n i e. Z
11 1 10 nfan
 |-  F/ n ( ph /\ i e. Z )
12 nfv
 |-  F/ n ( E ` ( i + 1 ) ) C_ ( E ` i )
13 11 12 nfim
 |-  F/ n ( ( ph /\ i e. Z ) -> ( E ` ( i + 1 ) ) C_ ( E ` i ) )
14 eleq1w
 |-  ( n = i -> ( n e. Z <-> i e. Z ) )
15 14 anbi2d
 |-  ( n = i -> ( ( ph /\ n e. Z ) <-> ( ph /\ i e. Z ) ) )
16 fvoveq1
 |-  ( n = i -> ( E ` ( n + 1 ) ) = ( E ` ( i + 1 ) ) )
17 fveq2
 |-  ( n = i -> ( E ` n ) = ( E ` i ) )
18 16 17 sseq12d
 |-  ( n = i -> ( ( E ` ( n + 1 ) ) C_ ( E ` n ) <-> ( E ` ( i + 1 ) ) C_ ( E ` i ) ) )
19 15 18 imbi12d
 |-  ( n = i -> ( ( ( ph /\ n e. Z ) -> ( E ` ( n + 1 ) ) C_ ( E ` n ) ) <-> ( ( ph /\ i e. Z ) -> ( E ` ( i + 1 ) ) C_ ( E ` i ) ) ) )
20 13 19 6 chvarfv
 |-  ( ( ph /\ i e. Z ) -> ( E ` ( i + 1 ) ) C_ ( E ` i ) )
21 2fveq3
 |-  ( m = i -> ( M ` ( E ` m ) ) = ( M ` ( E ` i ) ) )
22 21 cbvmptv
 |-  ( m e. Z |-> ( M ` ( E ` m ) ) ) = ( i e. Z |-> ( M ` ( E ` i ) ) )
23 17 difeq2d
 |-  ( n = i -> ( ( E ` K ) \ ( E ` n ) ) = ( ( E ` K ) \ ( E ` i ) ) )
24 23 cbvmptv
 |-  ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) = ( i e. Z |-> ( ( E ` K ) \ ( E ` i ) ) )
25 fveq2
 |-  ( m = i -> ( ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) ` m ) = ( ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) ` i ) )
26 25 cbviunv
 |-  U_ m e. Z ( ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) ` m ) = U_ i e. Z ( ( n e. Z |-> ( ( E ` K ) \ ( E ` n ) ) ) ` i )
27 2 3 4 5 20 7 8 22 24 26 meaiininclem
 |-  ( ph -> ( m e. Z |-> ( M ` ( E ` m ) ) ) ~~> ( M ` |^|_ i e. Z ( E ` i ) ) )
28 2fveq3
 |-  ( n = m -> ( M ` ( E ` n ) ) = ( M ` ( E ` m ) ) )
29 28 cbvmptv
 |-  ( n e. Z |-> ( M ` ( E ` n ) ) ) = ( m e. Z |-> ( M ` ( E ` m ) ) )
30 9 29 eqtri
 |-  S = ( m e. Z |-> ( M ` ( E ` m ) ) )
31 30 a1i
 |-  ( ph -> S = ( m e. Z |-> ( M ` ( E ` m ) ) ) )
32 17 cbviinv
 |-  |^|_ n e. Z ( E ` n ) = |^|_ i e. Z ( E ` i )
33 32 fveq2i
 |-  ( M ` |^|_ n e. Z ( E ` n ) ) = ( M ` |^|_ i e. Z ( E ` i ) )
34 33 a1i
 |-  ( ph -> ( M ` |^|_ n e. Z ( E ` n ) ) = ( M ` |^|_ i e. Z ( E ` i ) ) )
35 31 34 breq12d
 |-  ( ph -> ( S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) <-> ( m e. Z |-> ( M ` ( E ` m ) ) ) ~~> ( M ` |^|_ i e. Z ( E ` i ) ) ) )
36 27 35 mpbird
 |-  ( ph -> S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) )