| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaiininc2.f |  |-  F/ n ph | 
						
							| 2 |  | meaiininc2.p |  |-  F/ k ph | 
						
							| 3 |  | meaiininc2.m |  |-  ( ph -> M e. Meas ) | 
						
							| 4 |  | meaiininc2.n |  |-  ( ph -> N e. ZZ ) | 
						
							| 5 |  | meaiininc2.z |  |-  Z = ( ZZ>= ` N ) | 
						
							| 6 |  | meaiininc2.e |  |-  ( ph -> E : Z --> dom M ) | 
						
							| 7 |  | meaiininc2.i |  |-  ( ( ph /\ n e. Z ) -> ( E ` ( n + 1 ) ) C_ ( E ` n ) ) | 
						
							| 8 |  | meaiininc2.k |  |-  ( ph -> E. k e. Z ( M ` ( E ` k ) ) e. RR ) | 
						
							| 9 |  | meaiininc2.s |  |-  S = ( n e. Z |-> ( M ` ( E ` n ) ) ) | 
						
							| 10 |  | nfv |  |-  F/ k S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) | 
						
							| 11 |  | nfv |  |-  F/ n k e. Z | 
						
							| 12 |  | nfv |  |-  F/ n ( M ` ( E ` k ) ) e. RR | 
						
							| 13 | 1 11 12 | nf3an |  |-  F/ n ( ph /\ k e. Z /\ ( M ` ( E ` k ) ) e. RR ) | 
						
							| 14 | 3 | 3ad2ant1 |  |-  ( ( ph /\ k e. Z /\ ( M ` ( E ` k ) ) e. RR ) -> M e. Meas ) | 
						
							| 15 | 4 | 3ad2ant1 |  |-  ( ( ph /\ k e. Z /\ ( M ` ( E ` k ) ) e. RR ) -> N e. ZZ ) | 
						
							| 16 | 6 | 3ad2ant1 |  |-  ( ( ph /\ k e. Z /\ ( M ` ( E ` k ) ) e. RR ) -> E : Z --> dom M ) | 
						
							| 17 | 7 | 3ad2antl1 |  |-  ( ( ( ph /\ k e. Z /\ ( M ` ( E ` k ) ) e. RR ) /\ n e. Z ) -> ( E ` ( n + 1 ) ) C_ ( E ` n ) ) | 
						
							| 18 |  | id |  |-  ( k e. Z -> k e. Z ) | 
						
							| 19 | 18 5 | eleqtrdi |  |-  ( k e. Z -> k e. ( ZZ>= ` N ) ) | 
						
							| 20 | 19 | 3ad2ant2 |  |-  ( ( ph /\ k e. Z /\ ( M ` ( E ` k ) ) e. RR ) -> k e. ( ZZ>= ` N ) ) | 
						
							| 21 |  | simp3 |  |-  ( ( ph /\ k e. Z /\ ( M ` ( E ` k ) ) e. RR ) -> ( M ` ( E ` k ) ) e. RR ) | 
						
							| 22 | 13 14 15 5 16 17 20 21 9 | meaiininc |  |-  ( ( ph /\ k e. Z /\ ( M ` ( E ` k ) ) e. RR ) -> S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) ) | 
						
							| 23 | 22 | 3exp |  |-  ( ph -> ( k e. Z -> ( ( M ` ( E ` k ) ) e. RR -> S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) ) ) ) | 
						
							| 24 | 2 10 23 | rexlimd |  |-  ( ph -> ( E. k e. Z ( M ` ( E ` k ) ) e. RR -> S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) ) ) | 
						
							| 25 | 8 24 | mpd |  |-  ( ph -> S ~~> ( M ` |^|_ n e. Z ( E ` n ) ) ) |